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Figure S1. Observed (points), calculated (line) and difference (bottom line) X-ray diffraction 
pattern of NaNd(IO3)4 measured on D8 Bruker (λ = 1.54056 Å). Vertical lines indicate Bragg 
positions of the contribution phase NaNd(IO3)4.
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Figure S2. Observed (points), calculated (line) and difference (bottom line) X-ray diffraction 
pattern of NaGd(IO3)4 measured on D8 Bruker (λ = 1.54056 Å). Vertical lines indicate Bragg 
positions of the contribution phase NaGd(IO3)4.

Figure S3. Observed (points), calculated (line) and difference (bottom line) X-ray diffraction 
pattern of AgNd(IO3)4 measured on D8 Bruker (λ = 1.54056 Å). Vertical lines indicate Bragg 
positions of the contribution phase AgNd(IO3)4.
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Table S1 Coordination schemes of iodate anion towards cations in NaM(IO3)4, M=Y, Nd, Gd 
and AgM’(IO3)4, M’= Y, La, Nd, Eu, Gd, Bi. 
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d(Y1…Ag1) = 3,952(7) Å
d(Y1…Ag2) = 3,939(7) Å
d(Y1…Ag2’) = 3,820(7) Å
d(Y1…Ag2’’) = 4,230(7) Å
d(Y1…Y1’) = d(Y1…Y1’’) = 5,547(7) Å (= b)

 

Figure S4 : Environment of Y1 in AgY(IO3)4 showing the nearest metal neighbors. Each {Y(1)O8} 
polyhedron is linked by edge-sharing to four metals (one Ag1 and three Ag3 atoms) and connected 
via (M-O-I-O-M) bridging to two Y1 atoms.

d(Y2…Ag1) = 4,156(7) Å
d(Y2…Ag1’) = 4,274(7) Å
d(Y2…Ag1’’) = 5,550(7) Å
d(Y2…Ag2’) = 5,737(7) Å
d(Y2…Y2’) = d(Y2…Y2’’) = 5,547(7) Å (= b)

Figure S5 : Environment of Y2 in AgY(IO3)4 showing the nearest metal neighbors
Each {Y(2)O8} polyhedron is linked by edge-sharing to Ag1 atoms and connected via (M-O-I-O-M) 
bridging to four atoms (1 Ag1, 1 Ag2 and 2 Y2).
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d(Ag1…Ag2’) = 3,678(7) Å
d(Ag1…Ag2’’) = 3,873(7) Å
d(Ag1…Y1) = 3,952(7) Å 
d(Ag1…Y2) = 4,156(7) Å
d(Ag1…Y2’) = 4,274(7) Å
d(Ag1…Y2’’) = 5,550(7) Å
d(Ag1…Ag1’) = d(Ag1…Ag1’’) = 5,547(7) Å (= b)
d(Ag1…Ag2) = 5,656(7) Å

Figure S6 : Environment of Ag1 in AgY(IO3)4 showing the nearest metal neighbors. Each 
{Ag(1)O8} polyhedron is linked by edge-sharing to five metals: two Ag2, two Y2 and one Y1 
atoms, and connected via (M-O-I-O-M) bridging to one Y1, two  Ag1 and one Y2 atoms.

d(Ag2…Ag1’) = 3,678(7) Å
d(Ag2…Ag1’’) = 3,873(7) Å
d(Ag2…Y1) = 3,939(7) Å
d(Ag2…Y1’) = 4,230(7) Å 
d(Ag2…Y1’’) = 3,820(7) Å
d(Ag2…Ag2’) = d(Ag2…Ag2’) = 
5,547(7) Å (= b)
d(Ag2…Ag1) = 5,656(7) Å
d(Ag2…Y2’) = 5,737(7) Å

Figure S7 : Environment of Ag2 in AgY(IO3)4 showing the nearest metal neighbors. The 
{Ag(2)O8} polyhedron is linked by edge-sharing to  three Y1 atoms and two Ag1 atoms, and 
connected via (M-O-I-O-M) bridging to one Ag1, two  Ag2 and one Y2 atoms.
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Thermal analyses: DSC analyses were carried out on a NETZSCH ATD-DSC 404S 

apparatus and ran in the range 25-700°C, in argon flow at 5°C/min heating rate. DSC curves 

of NaY(IO3)4, AgY(IO3)4, AgBi(IO3)4 and AgLa(IO3)4 are shown in Fig. 7a and b. 

DSC curve of  NaY(IO3)4 shows only one decomposition peak at 550°C. The residue has been 

identified as the cubic phase of Y2O3 (JCPDS file no.76-0151). No phase transition is 

observed before 550°C. Decomposition of AgY(IO3)4 is done in two steps. The first peak 

centred at 430°C corresponds to the formation of a new phase which has not been identified. 

The second peak at 550°C is due to a mixture of AgI (JCPDS file no.01-0502) and Y2O3 

(JCPDS file no.76-0151 cubic phase). Studies lead in furnace, do not reveal phase transition 

before 430°C.

AgBi(IO3)4 also decays in two steps. The first peak at 490°C corresponds to the formation of 

a mixture of AgI (JCPDS file no.01-0502) and Bi5O7I (JCPDS file no.40-0548). At 540°C, 

residue has been identified as Bi2O3 (JCPDS file no.78-1793 tetragonal phase). No phase 

transition is observed before 490°C. 

Decomposition of AgLa(IO3)4 is done in two step. The first peak at 500°C highlights the 

fusion of the compound. The second peak at 530°C shows the formation of a mixture of AgI 

and La2O3. No phase transition is observed before 500°C. 
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Figure S8 DSC curves of a) NaY(IO3)4 (__), AgY(IO3)4 (---) AgBi(IO3)4 (…) and b) 
AgLa(IO3)4.

Figure S9 : Photographies showing the intensities of the emitted second harmonic generation 
by powders. The comparison of intensities allows us to give the followed ranking:  
AgBi(IO3)4 < AgLa(IO3)4   < AgY(IO3)4 < NaY(IO3)4 < -LiIO3.
 


