Supporting Information

Optical properties of Nd^{3+} and Yb^{3+} -doped $AgM(IO_3)_4$ metal iodates: transparent host matrices for mid-IR lasers and nonlinear materials.

Delphine Phanon ^I, Yan Suffren ^I, Mohamed B. Taouti ^{II}, Djamal Benbertal ^{II}, Alain Brenier ^{III}, Isabelle Gautier-Luneau ^{I*}

^I Université Grenoble Alpes, Institut NEEL, F-38042 Grenoble, France

^{II} Université de Laghouat, Laboratoire de Physico-Chimie des Matériaux, BP 37G. Laghouat 03000, Algérie

^{III} Institut Lumière Matière, UMR5306 Université Lyon 1-CNRS, Université de Lyon, 69622 Villeurbanne cedex, France

*Corresponding author: <u>Isabelle.Gautier-Luneau@neel.cnrs.fr</u>

Fax: +33 4 76 88 10 38; Tel: + 33 4 76 88 78 04

Figure S1. Observed (points), calculated (line) and difference (bottom line) X-ray diffraction pattern of NaNd(IO₃)₄ measured on D8 Bruker ($\lambda = 1.54056$ Å). Vertical lines indicate Bragg positions of the contribution phase NaNd(IO₃)₄.

Figure S2. Observed (points), calculated (line) and difference (bottom line) X-ray diffraction pattern of NaGd(IO₃)₄ measured on D8 Bruker ($\lambda = 1.54056$ Å). Vertical lines indicate Bragg positions of the contribution phase NaGd(IO₃)₄.

Figure S3. Observed (points), calculated (line) and difference (bottom line) X-ray diffraction pattern of AgNd(IO₃)₄ measured on D8 Bruker ($\lambda = 1.54056$ Å). Vertical lines indicate Bragg positions of the contribution phase AgNd(IO₃)₄.

Table S1 Coordination schemes of iodate anion towards cations in Na $M(IO_3)_4$, M=Y, Nd, Gd and Ag $M'(IO_3)_4$, M'=Y, La, Nd, Eu, Gd, Bi.

Figure S4 : Environment of Y1 in AgY(IO₃)₄ showing the nearest metal neighbors. Each {Y(1)O₈} polyhedron is linked by edge-sharing to four metals (one Ag1 and three Ag3 atoms) and connected via (*M*-O-I-O-*M*) bridging to two Y1 atoms.

Figure S5 : Environment of Y2 in $AgY(IO_3)_4$ showing the nearest metal neighbors Each {Y(2)O₈} polyhedron is linked by edge-sharing to Ag1 atoms and connected via (*M*-O-I-O-*M*) bridging to four atoms (1 Ag1, 1 Ag2 and 2 Y2).

Figure S6 : Environment of Ag1 in AgY(IO₃)₄ showing the nearest metal neighbors. Each $\{Ag(1)O_8\}$ polyhedron is linked by edge-sharing to five metals: two Ag2, two Y2 and one Y1 atoms, and connected via (*M*-O-I-O-*M*) bridging to one Y1, two Ag1 and one Y2 atoms.

Figure S7 : Environment of Ag2 in AgY(IO₃)₄ showing the nearest metal neighbors. The $\{Ag(2)O_8\}$ polyhedron is linked by edge-sharing to three Y1 atoms and two Ag1 atoms, and connected via (*M*-O-I-O-*M*) bridging to one Ag1, two Ag2 and one Y2 atoms.

Thermal analyses: DSC analyses were carried out on a NETZSCH ATD-DSC 404S apparatus and ran in the range 25-700°C, in argon flow at 5°C/min heating rate. DSC curves of NaY(IO₃)₄, AgY(IO₃)₄, AgBi(IO₃)₄ and AgLa(IO₃)₄ are shown in Fig. 7a and b.

DSC curve of NaY(IO₃)₄ shows only one decomposition peak at 550°C. The residue has been identified as the cubic phase of Y_2O_3 (JCPDS file no.76-0151). No phase transition is observed before 550°C. Decomposition of AgY(IO₃)₄ is done in two steps. The first peak centred at 430°C corresponds to the formation of a new phase which has not been identified. The second peak at 550°C is due to a mixture of AgI (JCPDS file no.01-0502) and Y_2O_3 (JCPDS file no.76-0151 cubic phase). Studies lead in furnace, do not reveal phase transition before 430°C.

AgBi(IO₃)₄ also decays in two steps. The first peak at 490°C corresponds to the formation of a mixture of AgI (JCPDS file no.01-0502) and Bi₅O₇I (JCPDS file no.40-0548). At 540°C, residue has been identified as Bi₂O₃ (JCPDS file no.78-1793 tetragonal phase). No phase transition is observed before 490°C.

Decomposition of AgLa(IO₃)₄ is done in two step. The first peak at 500°C highlights the fusion of the compound. The second peak at 530°C shows the formation of a mixture of AgI and La₂O₃. No phase transition is observed before 500°C.

Figure S8 DSC curves of a) $NaY(IO_3)_4$ (--), $AgY(IO_3)_4$ (---) $AgBi(IO_3)_4$ (...) and b) $AgLa(IO_3)_4$.

Figure S9 : Photographies showing the intensities of the emitted second harmonic generation by powders. The comparison of intensities allows us to give the followed ranking: AgBi(IO₃)₄ < AgLa(IO₃)₄ < AgY(IO₃)₄ < NaY(IO₃)₄ < α -LiIO₃.