Electronic Supporting Information (ESI) for

Aggregation-induced and crystallization-enhanced emissions with time-dependent of a new Schiff-base family based on benzimidazole

Yuanle Cao^a, Mingdi Yang^{a, b, *}, Yang Wang^a, HongPing Zhou^{a, *}, Jun Zheng^c, Xiuzhen Zhang^a, Jieying Wu^a, Yupeng Tian^a and Zongquan Wu^d

^aCollege of Chemistry and Chemical Engineering, Anhui University and Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Hefei 230601, P. R. China. ^bSchool of Materials and Chemical Engineering, Anhui Jianzhu University, Hefei 230601, P. R. China.

^cCenter of Modern Experimental Technology, Anhui University, Hefei 230039, P. R. China. ^dSchool of Chemical Engineering, Hefei University of Technology, Hefei 230009, P. R. China. *Corresponding author. ^aFax: +86-551-63861279, Tel: +86-551-63861279; ^bFax: +86-551-63828106, Tel: +86-551-63828150.

E-mail address: zhpzhp@263.net

Fig. S1 Absorption spectra of compounds 2, 3, 4, 6 in different polarity solvents (10 μ M).

Fig. S2 Fluorescence spectra of compounds 2, 3, 4, 6 in different polar solvents (10 μ M).

Solv.	1		2		3		4		5		6	
	λ_{a}	λ_{e}	λ_{a}	λ_{e}								
DCM	380	468	378	468	383	470	375	470	381	467	382	466
THF	380	437	378	436	382	438	376	437	382	443	382	438
Ethanol	379	470	377	470	384	472	376	470	380	466	381	471
acetonitrile	373	470	373	474	378	466	371	471	377	468	377	467
DMF	380	452	380	452	384	453	372	447	381	449	380	449
DMSO	381	459	380	457	386	460	374	452	379	456	381	454
λ_a : maximum absorption wavelength; λ_e : maximum emission wavelength.												

Table S1 Maximum absorption and emission wavelength of 1-6 in different solvents.

Compound	HOMO (eV)	LUMO (eV)	$\Delta E_{g}(eV)$
1	4.70	1.57	3.13
2	4.74	1.58	3.17
3	4.79	1.77	3.02
4	4.70	1.34	3.36
5	4.70	1.51	3.19
6	4.77	1.49	3.28

Table S2: Energy levels of compounds 1-6.

1.0 0.8 f_w (vol%) 2 f_w (vol%) 3 0.9 0.7 ---- 90 ---- 80 ---- 70 ---- 60 ---- 90 ---- 80 ---- 70 0.8 0.6 0.7 Absorption (au) Absorption (au) 60 50 0.5 0.6 50 0.5 40 30 0.4 40 30 0.4 0.3 20 10 --- 20 0.3 10 0.2 0 0.2 0.1 -----0.1 0.0 0.0 350 450 300 350 400 450 500 550 600 300 400 500 550 600 Wavelength (nm) Wavelength (nm) 0.6 0.5 f_w (vol%) ---- 90 ---- 80 ---- 70 ---- 60 ---- 50 ---- 40 4 6 f_w (vol%) ---- 90 ---- 80 ---- 60 ---- 50 ---- 30 ---- 30 0.5 0.4 0.4 Absorption (au) Absorption (au) 0.3 0.3 30 20 0.2 0.2 -- 20 10 - 0 0.1 0.1 --- 0 0.0 0.0 550 500 300 350 400 450 600 300 350 400 450 500 550 600 Wavelength (nm) Wavelength (nm)

Fig. S3 UV absorption spectra of 2, 3, 4, 6 in THF/water mixtures with different water fractions after water was injected for 1 h (10 μ M).

Fig. S4 PL spectra of the dilute solutions of 2, 3, 4, 6 in THF/water mixtures with different water fractions (excitation wavelength = 365 nm) after water was injected for 24 hours (10 μ M). The insets show the emission images of 2, 3, 4, 6 in pure THF as well as solvent mixtures with 30%, 60% and 90% water contents taken under 365 nm UV illumination at room temperature (10 μ M).

Fig. S5 Time-dependent of changes in the PL peak intensity (2, 3, 4, 6) $(10 \mu M)$.

Fig. S6 SEM of **6** formed in THF/water mixtures with 90% water content after water was injected for 1 h (a) and 24 h (b).

Fig. S7 Particle size distributings of 6 in THF/water mixtures with water fractions of 70% (a, 30

min and b, 3 h) and 90% (c, 30 min and b, 24 h).

Fig. S8 TEM images and ED patterns of 1 formed in the THF/water mixtures of 50% water content after water was injected for 40 min and 2 hours, respectively.

Fig. S9 PL spectra of 2, 3, 4, 6 in power, film, pure THF solution and the solvent mixture with 30% water content (10 μ M) after the water was injected for 24 h.

Fig. S10 PL lifetime spectra of 2, 3, 4, 6 in pure solution, mixture solution with 30% water content and 60% water content (10 μ M).

	Water/f _w	τ_l/ns	τ_2/ns	A_1	A_2	χ^2	<7>/ns
	0	1.68	2.69	0.54	0.46	1.34	2.14
1	30	0.31	3.33	0.06	0.94	1.04	3.15
	60	0.20	1.89	0.10	0.90	1.16	1.73
	0	1.54	2.61	0.48	0.52	1.13	2.10
2	30	0.36	3.38	0.05	0.95	1.04	3.22
	60	0.19	1.97	0.10	0.90	0.99	1.79
	0	1.83	3.09	0.73	0.27	1.17	2.17
3	30	0.34	3.36	0.05	0.95	1.12	3.21
	60	0.19	2.04	0.09	0.91	1.05	1.87
	0	1.76	3.05	0.66	0.34	1.12	2.20
4	30	1.44	3.24	0.09	0.91	1.38	3.07
	60	2.85	1.91	0.08	0.92	1.02	1.98
	0	1.75	3.09	0.64	0.36	1.13	2.23
5	30	1.49	3.39	0.09	0.91	1.30	3.19
	60	0.32	1.85	0.07	0.93	1.13	1.74
	0	1.71	2.78	0.52	0.48	1.20	2.22
6	30	1.42	3.18	0.09	0.91	1.32	3.02
	60	0.075	1.74	0.11	0.89	1.15	1.56

Table S3 Lifetime of 1-6.

The mean lifetime $<\tau>$ was calculated according to equation $<\tau>=(A_1t_1+A_2t_2)/(A_1+A_2)$.