SUPPORTING INFORMATION

Network assembly of gold nanoparticles linked through fluorenyl dithiol bridge

Maurizio Quintiliani,^[a] Mauro Bassetti,^[b] Chiara Pasquini, ^[b] Chiara Battocchio, ^[c] Marco Rossi,^[d,e] Francesco Mura, ^[d] Roberto Matassa, ^[e] Maria Vittoria Russo^[a], and Ilaria Fratoddi,^[a,d]*

 [a] Dr. M. Quintiliani, Prof. M. V. Russo, and Dr. I. Fratoddi* Department of Chemistry University of Rome Sapienza
P.le A. Moro 5, 00185, Rome Italy
E-mail: ilaria.fratoddi@uniroma1.it

- [b] Dr. M. Bassetti, Dr. C. Pasquini, CNR, Istituto di Metodologie Chimiche, Sezione Meccanismi di Reazione, Dipartimento di Progettazione Molecolare, P.le A. Moro 5, 00185 Rome Italy
- [c] Dr. C. Battocchio, Department of Physics, Unità INSTM and CISDiC University Roma Tre, Via della Vasca Navale 85, 00146 Rome, Italy
- [d] Dr. F. Mura, Center for Nanotechnology for Engineering (CNIS) University of Rome Sapienza P.le A. Moro 5, 00185 Rome, Italy

[e] Prof. M. Rossi, Dr. R. Matassa

Department Fundamental and Applied Sciences for Engineering, University of Rome Sapienza Via Antonio Scarpa 14, 00161 Roma, Italy

Fluorenyl bis-thiolacetate (1) has been prepared starting from commercially available 9,9-didodecyl-2,7-dibromo-fluorene using a three-step one-pot protocol reported in the literature for the functionalization of 2,7-dibromofluorene (Figure 1). Error! Bookmark not defined.

Figure 1. Synthesis of compound (1)

Figure 2: UV-vis for compound (1)

Figure 3: FTIR of compound (1)

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C This journal is O The Royal Society of Chemistry 2014

Figure 4: ¹H and ³¹C NMR of compound (1)

Figure 5: Scheme for the preparation of 1-(S-acetylthio)-4-iodobenzene

Figure 6: UV-vis and FTIR characterizations of 1-(S-acetylthio)-4-iodobenzene

Figure 7: ¹H and ³¹C NMR of 1-(S-acetylthio)-4-iodobenzene

The synthesis of fluorenyl thiolate (2) bearing two ethynylphenyl spacers between fluorene and the terminal thioacetyl groups is shown in Figure 2.

2 (33%)

Figure 8: Reaction scheme for the preparation of compound (2)

Figure 9: UV-vis and FTIR characterizations of compound (1a)

Figure 10: UV-vis and FTIR characterizations of compound (1b)

Figure 11: UV-vis and FTIR characterizations of compound (2)

Figure 12: ¹H and ³¹C NMR of compound (1a)

Figure 13: ¹H and ³¹C NMR of compound (1b)

Figure 14: ¹H and ³¹C NMR of compound (2)

Figure 15: FTIR of compound (1) and AuNPs-1 (film)

Figure 16: ¹H NMR of AuNPs-1

SAMPLE	Signal	BE (eV)	FWHM (eV)	Assignment % on the same signal	
Thiolate 1	C1s	285.00	1.79	C*-C 80%	
		286.59	1.79	C*-S; COC*H ₃ 12.8%	
		288.42	1.79	C*OCH ₃ 7.2%	
		292.79	1.79	Shake-up?	
	$S2p_{3/2}$	163.36	1.75	S*COCH ₃	
AuNPs-1 0.25/1	C1s	285.00	1.48	C*-C 86%	
		286.36	1.48	C*-S; COC*H ₃ 9.8%	
		287.98	1.48	C*OCH ₃ 4.2%	
	$S2p_{3/2}$	162.61	1.62	S*-Au 26%	
		163.95	1.62	S*COCH ₃ 74%	
	$Au4f_{7/2}$	84.08	1.26	Au(0) 90%	
		84.99	1.26	Au*-S 10%	
AuNPs-1 1.0/1	C1s	285.00	1.55	C*-C 85%	
		286.47	1.55	C*-S; COC*H ₃ 9%	
		287.87	1.55	C*OCH ₃ 1%	
	$S2p_{3/2}$	162.65	1.88	S*-Au 31%	
		164.30	1.88	S*COCH ₃ 69%	
	$Au4f_{7/2}$	83.90	1.27	Au(0) 88.7%	
		84.78	1.27	Au*-S 11.3%	
AuNPs-1 0.7/1	C1s	285.00	1.59	C*-C 83%	
		286.41	1.59	C*-S; COC*H ₃ 12%	
		288.03	1.59	C*OCH ₃ 5%	
	S2p _{3/2}	162.45	1.40	S*-Au 32%	
		163.91	1.40	S*COCH ₃ 68%	
	$Au4f_{7/2}$	84.04	1.28	Au(0) 86%	
		85.00	1.28	Au*-S 14%	
Thiolate 2	C1s	285.00	1.62	C*-C 79.0%	
		286.31	1.62	C*-S; COC*H ₃ 15.5%	
		288.24	1.62	C*OCH ₃ 5.5%	
		292.65	1.62	Shake-up	
	S2p	164.06	1.56	S*COCH ₃	
AuNPs-2 1.0/1	C1s	285.00	1.81	C*-C 66.70% C*-S; COC*H ₃ 21.10%	
		286.86	1.81		
		288.54	1.81	C*OCH ₃ 12.20%	
	S2p	161.80	1.77	S*-Au 100%	
	$Au4f_{7/2}$	84.00	1.27	Au(0) 75.70%	
		84.67	1.27	Au*-S 24.30%	

Table 1: XPS core levels data collected on fluorene thiolates 1 and 2, AuNPs-1 and AuNPs-2.

Sample	Concentration	Absorption λ _{max} (nm)	Emission λ _{max} (nm)
1	1.95 x 10 ⁻⁶ M (1.27 x10 ⁻³ mg/mL) (CHCl ₃)	293 (4.3), 317 (4.4)	$\lambda_{exc320} = 355, 390(s)$
2	1.75 x 10 ⁻⁶ M (CHCl ₃)	360 (4.9)	$\lambda_{exc360} = 385, 405$
AuNPs-1	2.3 x 10 ⁻³ mg/mL (CH ₂ Cl ₂)	323 (s) 330 530	$\lambda_{exc330} = 387,409$ $\lambda_{exc530} = 792$
AuNPs-2	2.0 x 10 ⁻³ mg/mL (DMF)	365 593	$\lambda_{exc360} = 381, 402$ $\lambda_{exc580} = 765, 820$

Table 2: Photophysical parameters of 1, 2, AuNPs-1 and AuNPs-2.