Supporting Information

## Highly Efficient Single Emissive Layer Orange and Two-Element White Organic Light-Emitting Diodes by Solution Processe

Jinshan Wang, Xinjun Xu,\* Yuan Tian, Chuang Yao, Lidong Li\*

State Key Lab for Advanced Metals and Materials, School of Materials Science and

Engineering, University of Science and Technology Beijing, Beijing 100083, P. R.

China.

E-Mail: lidong@mater.ustb.edu.cn; xuxj@mater.ustb.edu.cn

<sup>1</sup>HNMR, <sup>13</sup>CNMR and MS(EI) of 1:





<sup>1</sup>HNMR, <sup>13</sup>CNMR and MS(EI) of **2**:



S3



<sup>1</sup>HNMR, <sup>13</sup>CNMR and MS(EI) of **3**:













Fig. S1 The NMR spectra and mass spectra (MS) of all compounds.

**Table S1.** The photoluminescent quantum yields of  $(CF_3BT-CF_3P)_2Ir(acac)$  under different doping concentrations in solid states.

| Doping concentration <sup>a</sup> | 20:1 | 10:1 | 5:1 | 0:1 |
|-----------------------------------|------|------|-----|-----|
| $\Phi_{\mathrm{P}}$ (%)           | 67   | 62   | 42  | 1.8 |

<sup>*a*</sup> The w/w concentration of PVK: iridium complex.

**Table S2.** Frontier molecular orbital (FMO) energies (E, eV) and compositions (%) of (CF<sub>3</sub>BT-CF<sub>3</sub>P)<sub>2</sub>Ir(acac) in the lowest-triplet excited state in the gas phase under vacuum.

| FMO <sup>a</sup> | Ε     |    | MO composition $(\%)^b$ |       |      | Assignment                    |
|------------------|-------|----|-------------------------|-------|------|-------------------------------|
|                  | (eV)  | Ir | PBT-1                   | PBT-2 | acac |                               |
| L                | -2.73 | 4  | 94                      | 1     | 1    | <b>π*</b> (PBT-1)             |
| Н                | -5.70 | 40 | 33                      | 21    | 6    | d(Ir)+π(PBT-1+ PBT-2)         |
| H-1              | -5.95 | 30 | 8                       | 7     | 55   | $d(Ir)+\pi(acac)$             |
| H-2              | -6.35 | 12 | 52                      | 13    | 23   | $d(Ir)+\pi(PBT-1+PBT-2+acac)$ |

<sup>*a*</sup> H=HOMO, L=LUMO, H-1=HOMO-1, H-2=HOMO-2. <sup>*b*</sup> PBT=2-phenyl benzothiazole.

**Table S3.** Calculated orbital transition analyses based on the geometry optimization

 of the lowest-lying triplet state.

| State                          | Configuration <i>a</i> | Assignment <sup>b</sup>                                                  | MLCT <sup>c</sup><br>(%) |
|--------------------------------|------------------------|--------------------------------------------------------------------------|--------------------------|
| S <sub>0</sub> -T <sub>1</sub> | H→L(22%)               | $d(Ir)+\pi(PBT-1+PBT-2) \rightarrow \pi^*(PBT-1)/MLCT/LLCT/IL$           | 23.5                     |
|                                | H−1→L(55%)             | d(Ir)+ $\pi$ (acac) $\rightarrow \pi^*$ (PBT-1)/MLCT/LLCT                |                          |
|                                | H−2→L(16%)             | d(Ir)+ $\pi$ (PBT-1+PBT-2+acac) $\rightarrow \pi^*$ (PBT-1)/MLCT/LLCT/IL |                          |

<sup>*a*</sup> H=HOMO, L=LUMO, H-1=HOMO-1, H-2=HOMO-2. <sup>*b*</sup> PBT=2-phenyl benzothiazole. MLCT, LLCT and IL denote metal-to-ligand charge transfer, ligand-to-ligand charge transfer and intraligand, respectively.  ${}^{c}MLCT(\%) = \sum_{m,n} [C_{I}(m \rightarrow n)]^{2} (\%(M)_{m} - \%(M)_{n}), ^{[1]}$  where  $\%(M)_{m,n}$  is

the molecular orbital (MO) composition contributed from the metal to the orbital involved in the transition model of MO(m) $\rightarrow$ MO(n),  $C_I(m\rightarrow n)$  is the corresponding coefficients of the I-th eigenvector of the configuration interaction (CI) matrix, so  $[C_I(m\rightarrow n)]^2$  is the contribution of this electron transition model to the S<sub>0</sub> $\rightarrow$ T<sub>1</sub> transition.



**Fig. S2** Cyclic voltammogram of  $(CF_3BT-CF_3P)_2Ir(acac)$  in  $CH_2Cl_2$  with 0.1 M  $Bu_4NPF_6$  as the electrolyte at a potential scan rate of 30 mV s<sup>-1</sup>. The inset shows the redox curve of ferrocene. The first oxidation peak was used to calculate the HOMO level of  $(CF3BT-CF3P)_2Ir(acac)$ .



**Fig. S3** The spin density of the triplet electronic configuration of  $(CF_3BT-CF_3P)_2Ir(acac)$  (the blue balloons indicate regions where the spin density is positive and the green balloons the regions where the spin density is negative).



**Fig. S4** The device configuration of monochromatic orange OLEDs and two–element WOLEDs together with the molecular structures of compounds used in these devices.



Fig. S5 The EL spectra of device A under various driving voltages.



Fig. S6 The EL spectrum of  $W_2$  and  $W_4$  at 12 V.



Fig. S7 The EL spectra of device  $W_3$  under various driving voltages.

## References

1 S. I. Gorelsky and A. B. P. Lever, Can. J. Anal. Sci. Spectr., 2003, 48, 93.