Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2014

Two-Component Solution Processing of Oxide Semiconductors for Thin-

Film Transistors via Self-Combustion Reaction

Young Hun Kang,[‡] Sunho Jeong,[‡] Jung Min Ko, Ji-Yoon Lee, Youngmin Choi,

Changjin Lee,* and Song Yun Cho*

Additional Figures

Fig. S1 (a) Transfer characteristics and (b) the variation of mobility and threshold voltage for fuel-free IGO TFTs depending on the chemical composition of In and Ga.

R value		Annealing	Average
Acetylacetone	NH ₄ OH	Anneanng	mobility
(R ₁)	(R_2)	temperature (C)	$(\text{cm}^2 \text{V}^{-1} \text{s}^{-1})$
1	1	250	0.20
		300	1.80
2	1	250	0.03
		300	0.96
1	2	250	0.21
		300	2.30
2	2	250	0.15
		300	3.55
3	2	250	0.04
		300	1.86
1	3	250	2.45
		300	12.50
2	3	250	0.23
		300	4.75
3	3	250	0.20
		300	Break down
1	4	250	1.10
		300	Break down
2	4	250	0.85
		300	Break down
3	4	250	0.70
		300	Break down

Table S1 The characteristics of IGO TFTs as a function of the composition of AcAc and $\rm NH_4OH$

Fig. S2 XPS spectra of the $I_{NO}Z_{AC}O$ thin films at different annealing temperatures: (a) at 250 °C, (b) 300 °C, and (c) 350 °C.

Fig. S3 XPS spectra of IZO thin films prepared from precursors with different composition ratios of In_{NO} to Zn_{AC} : (a) $In_{NO}/Zn_{AC}=5/1$, (b) $In_{NO}/Zn_{AC}=4/2$, (c) $In_{NO}/Zn_{AC}=3/3$, (d) $In_{NO}/Zn_{AC}=2/4$, and (e) $In_{NO}/Zn_{AC}=1/5$.

Fig. S4 XPS spectra of the $I_{NO}Z_{AC}O$ thin films from different composition ratios of In_{NO} to Zn_{AC} precursors.

Fig. S5 Thermal behavior of the $I_{NO}Z_{AC}O$ precursor prepared from $In_{NO}/Zn_{AC}=1/5$.

Fig. S6 AFM and SEM images showing the surface roughness of IZO thin films prepared from: (a) $I_{NO}Z_{AC}O$, (b) $I_{AC}Z_{AC}O$, (c) $I_{NO}Z_{NO}O$, and (d) $I_{CI}Z_{CI}O$ precursors.

Fig. S7 Cross-sectional SEM images of the IZO thin films prepared from: (a) $I_{NO}Z_{AC}O$, (b) $I_{AC}Z_{AC}O$, (c) $I_{NO}Z_{NO}O$, and (d) $I_{CI}Z_{CI}O$ precursor.

Fig. S8 XRD patterns of the IZO thin films according to the different (a) combinations and (b) compositions of In/Zn precursors.

Fig. S9 The transfer and output characteristics of $I_{AC}Z_{NO}O$ TFTs fabricated from precursors with different composition ratios of In_{AC} to Zn_{NO} : (a) $In_{AC}/Zn_{NO}=5/1$, (b) $In_{AC}/Zn_{NO}=4/2$, (c) $In_{AC}/Zn_{NO}=3/3$, (d) $In_{AC}/Zn_{NO}=2/4$, and (e) $In_{AC}/Zn_{NO}=1/5$.

Fig. S10 The transfer and output characteristics of the $I_{NO}Z_{AC}OTFTs$ at different annealing temperatures: (a) at 250 °C and (b) 300 °C.

Fig. S11 The transfer and output characteristics of the inkjet-printed $I_{NO}Z_{AC}O$ TFT prepared with an identical composition ratio of In and Zn at annealing temperature of 350 °C.

Fig. S12 Raw TGA and DTA thermogram of (a) In_{AC} and (b) Zn_{AC} .

Fig. S13 Raw TGA and DTA thermograms of (a) $In_{NO}\,and$ (b) $Zn_{NO}.$

Fig. S14 Raw TGA and DTA thermograms of (a) In_{Cl} and (b) Zn_{Cl} .

Fig. S15 Raw TGA and DTA thermograms of (a) $I_{NO}Z_{AC}O$, (b) $I_{AC}Z_{AC}O$, (c) $I_{NO}Z_{NO}O$ and (d) $I_{Cl}Z_{Cl}O$.