Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2014

Electronic Supplementary Information (ESI)

Crafting NPB with tetraphenylethene: a win-win strategy to create stable and efficient solid-state emitter with aggregation-induced emission feature, high hole-transporting property and efficient electroluminescence

Wei Qin,^{ab} Jianzhao Liu,^{ab} Shuming Chen,^c Jacky W. Y. Lam,^{ab} Mathieu Arseneault,^{ab} Zhiyong Yang,^{ab} Qiuli Zhao,^d Hoi Sing Kwok,^c and Ben Zhong Tang*^{abe}

^{*a*} HKUST-Shenzhen Research Institute, No. 9 Yuexing 1st RD, South Area, Hitech Park, Nanshan, Shenzhen, 518057, China. E-mail: tangbenz@ust.hk

^b Department of Chemistry, Institute for Advanced Study, Institute of Molecular Functional Materials and Division of Biomedical Engineering, The Hong Kong University of Science & Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong, China

^c Center for Display Research, HKUST, Clear Water Bay, Kowloon, Hong Kong, China

^d Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China

^e Guangdong Innovative Research Team, SCUT-HKUST Joint Research Laboratory, State Key Laboratory of Luminescent Materials and Device, South China University of Technology (SCUT), Guangzhou, 51640, China

Table of Contents

Figure S1. ¹H NMR spectrum of TPE-NPB in chloroform-*d*.

Figure S2. High resolution mass spectrum of TPE-NPB.

Figure S3. TGA thermogram of NPB recorded under nitrogen at a heating rate of 10 °C/min.

Figure S4. Cyclic voltammogram of TPE-NPB measured in dichloromethane containing 0.1 M tetra-*n*-butylammonium hexafluorophosphate. Scan rate = 100 mV/s. **Figure S5.** Changes in current and luminance with the applied voltage in a single-layer EL device of TPE-NPB with a configuration of ITO/TPE-NPB/LiF/A1. Inset: EL spectrum of the device.

Table S1. Summary of angles in TPE-NPB.

Figure S1. ¹H NMR spectrum of TPE-NPB in chloroform-*d*.

Figure S2. High resolution mass spectrum of TPE-NPB.

Figure S3. TGA thermogram of NPB recorded under nitrogen at a heating rate of 10 °C/min.

Figure S4. Cyclic voltammograms of TPE-NPB measured in dichloromethane containing 0.1 M tetra-*n*-butylammonium hexafluorophosphate. Scan rate = 100 mV/s.

Figure S5. Changes in current and luminance with the applied voltage in a singlelayer EL device of TPE-NPB with a configuration of ITO/TPE-NPB/LiF/A1. Inset: EL spectrum of the device.

Table S1. Summary of angles for TPE-NPB

	Torsion angles (°)
С3-С4-С7-С9	50.1
C12-C10-C9-C7	48.2
C21-C11-C9-C7	50.2
C22-C8-C7-C9	48.1
	Angles between planes (°)
P ₁ - P ₂	~34
P ₂ -P ₃	~79
P ₂ -P ₄	~63
P ₃ -P ₄	~83