Supplementary Information

Intrinsic Low Dielectric Behavior of a Highly Thermal Stable Sr-Based Metal–Organic Framework for Interlayer Dielectric Materials

Muhammad Usman,^{abc} Cheng-Hua Lee,^a Dung-Shing Hung,^d Shang-Fan Lee,^e Chih-Chieh Wang,^f Tzuoo-Tsair Luo,^a Li Zhao,^e Mau-Kuen Wu,^{eg} Kuang-Lieh Lu^{*a}

 ^aInstitute of Chemistry, Academia Sinica, Taipei 115, Taiwan E-mail: kllu@gate.sinica.edu.tw, Fax: +886-2-27831237
^bDepartment of Physics, National Central University, Chung-Li 320, Taiwan ^cInstitute of Atomic and Molecular Science, Taipei 106, Taiwan
^dDepartment of Information and Telecommunications Engineering, Ming Chuan University, Taipei 111, Taiwan
^eInstitute of Physics, Academia Sinica, Taipei 115, Taiwan
^fDepartment of Chemistry, Soochow University, Taipei 100, Taiwan
^gDepartment of Physics, National Dong Hwa University, Hualien 974, Taiwan

Chemical formula	$C_{16}H_{14}O_{11}Sr_2$
Formula weight (g/mol)	557.51
Crystal system	Monoclinic
Space group	C2/c
Temperature	296 (2)
<i>a</i> (Å)	24.074(5)
<i>b</i> (Å)	12.735(3)
<i>c</i> (Å)	13.455(3)
B (°)	118.63(3)
V (Å ³)	3620.5(12)
Ζ	8
D_{calcd} (g/cm ³)	2.046
θ range (°)	3.02-26.40
$\mu (\mathrm{mm}^{-1})$	5.955
F (000)	2192
Reflns collected	13817
Unique reflns	3683
Parameters	262
R _{int}	0.0358
$R_1, wR_2^{a} (I > 2\sigma(I))$	0.0260, 0.0518
R_1 , wR_2^a (all data)	0.0388, 0.0557
GOF	1.026

Table S1. Crystal and structure refinement data for compound 1 $% \left({{{\mathbf{T}}_{{\mathbf{T}}}}_{{\mathbf{T}}}} \right)$

^a $R_I = \Sigma ||F_0| - |F_c|| / \Sigma |F_0|$; $wR_2 = [\Sigma w (F_0^2 - Fc^2)_2 / \Sigma w (F_0^2)_2]^{1/2}$

Figure S1. IR spectra of 1,3-bis-(4,5-dihydro-2-oxazolyl)benzene, 1,3-dicarboxylic acid and compound 1.

Figure S2. Compound 1 with water molecules present between the layers may undergo shrinkage along the *a*-axis upon dehydration with a (200) plane shift in PXRD.

Figure S3. Coordination environment of (a) Sr(1) and, (b) Sr(2) in compound 1.

Figure S4. Surface topology shown through (a) A single crystal of compound **1**, (b) SEM image of a single crystal of compound **1**, (c) Crystals of compound **1**, (d) A single crystal of dehydrated compound **1'**, (e) SEM image of a single crystal of dehydrated compound **1'**, (f) crystals of dehydrated compound **1'**.

Figure S5. Dielectric loss vs frequency curves of pellet sample 1 and dehydrated compound 1'.

Figure S6. Leakage current density (A/mm²) measurement for the dehydrated sample 1'.