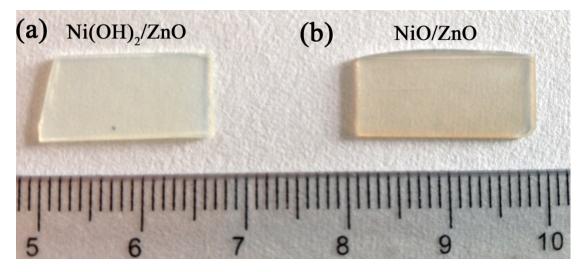

SupportingInformation

Honeycomb-like NiO/ZnO Heterostructured Nanorods: Photochemical Synthesis, Characterization, and Enhanced UV Detection Performance

Wen Dai, Xinhua Pan*, Shanshan Chen, Cong Chen, Zhen Wen, Honghai Zhang and Zhizhen Ye*


State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, Zhejiang University, Hangzhou, 310027, P.R. China. Tel: +86-571-87952187; Fax: +86-571-87952124; E-mail: panxinhua@zju.edu.cn; yezz@zju.edu.cn.

Supporting Information I: Experiment process

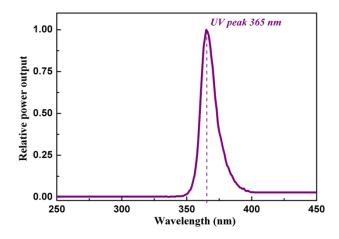
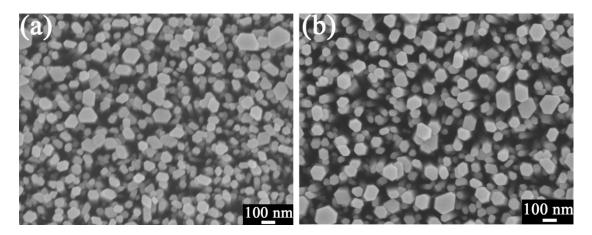
Scheme S1. Schematic illustration of the fabrication of honeycomb-like NiO/ZnO heterostructure UV photodetector.

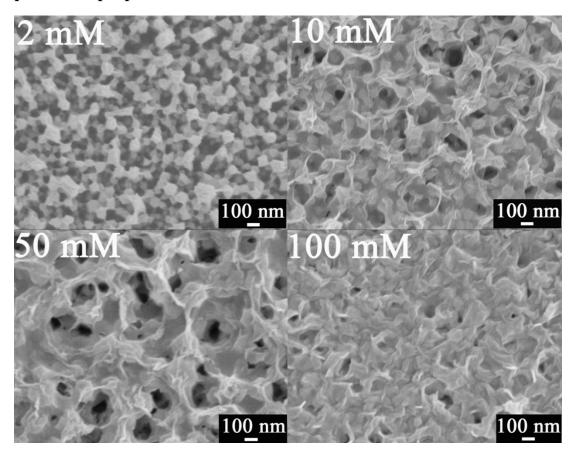
Supporting Information II: Optical images

Figure S1. Optical images of (a) precursor $Ni(OH)_2/ZnO$ and (b) NiO/ZnO heterostructures.

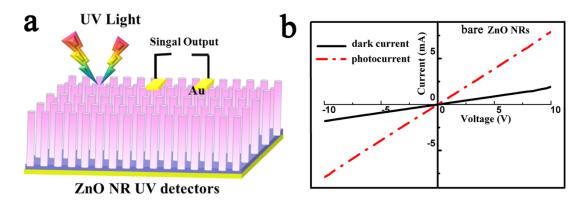
Supporting Information III: UV light source details

The employed light source for UV detection is UVA-LED (peak \sim 365 nm, LUYOR-365, LUYOR®). Furthermore, the UV light source has been filtered to block the disturbance of other lights (see below). The irradiation of UVA-LED is filtered by Integral Clear Filter (built in, bandpass filter 355 \sim 375 nm).


Figure S2. Relative spectral power output for UV light.

Supporting Information IV: SEM images of ZnO NRs before and after annealing in air at 500 $^{\rm o}{\rm C}$


Figure S3. SEM images of ZnO NRs: (a) as-grown ZnO NRs. (b) ZnO NRs after annealing in air at 500 °C.

Supporting Information V: SEM images of Ni(OH)₂/ZnO NRs precursor prepared at different Ni²⁺ ion concentrations

Figure S4. SEM images of the Ni(OH)₂/ZnO NRs precursor prepared at different Ni²⁺ ion concentrations. For all samples, UV irradiation time was fixed at 12 h.

Supporting Information VI: I-V characteristics of bare ZnO NRs

Figure S5. (a) The schematic diagram of the bare ZnO NRs based UV detectors; (b) *I-V* characteristics of bare ZnO NRs under dark and 365 nm UV illumination conditions.