Photovoltaic properties of bis(octyloxy)benzo[c][1,2,5]-thiadiazole sensitizers based on *N*,*N*-diphenylthiophen-2-amine donor

Xiaoyu Zhang,^{*a*} Long Chen,^{*a*} Xin Li,^{*b*} Jiangyi Mao,^{*a*} Wenjun Wu,^{*a*} Hans Ågren,^{*b*} and Jianli Hua^{*a*} *

^a Key Laboratory for Advanced Materials and Institute of Fine Chemicals, East China University of Science and Technology Shanghai 200237, China

^b Department of Theoretical Chemistry and Biology, School of Biotechnology, KTH Royal Institute of Technology, Stockholm 10691, Sweden

E-mail: jlhua@ecust.edu.cn; Fax: +86-21-64252758

Fig. S1. Cyclic voltammetry plots of DOBT-IV~VI dyes measured in CH₂Cl₂ solution.

Fig. S2. The frontier orbitals of **DOBT-IV~VI**, calculated at (isodensity=0.020 a.u.) Hydrogens are omitted for clarity. ^[a] The dihedral angles between the benzothiadiazole rings and π -spacer near anchoring moiety

parentheses for comparison.						
Compound	$\lambda_{\rm max}$ / nm	Osc. Str.	$E_{\rm OX}({ m GS}) /{ m eV}$	$E_{\rm OX}({\rm ES}) / {\rm eV}$	$\Delta G^{ m inject}$ / eV	
DOBT-IV	500 (483)	1.0755	4.95	2.47	-1.53	
DOBT-V	582 (525)	1.4772	4.93	2.80	-1.20	
DOBT-VI	587 (531)	1.5849	4.93	2.82	-1.18	

Table S1. Computed ICT absorption wavelength, oscillator strength, oxidation potential in ground state and excited state, and free energy for electron injection process. For λ_{max} , experimentally measured values are shown in parentheses for comparison.

Table S2. Computed energy levels of frontier molecular orbitals and HOMO-LUMO energy gap. Shown in parentheses are the computed redox potentials with respect to NHE.

Compound	HOMO / eV	LUMO / eV	$\Delta E / \mathrm{eV}$
DOBT-IV	-5.22 (0.78)	-2.76 (-1.68)	2.46
DOBT-V	-5.21 (0.77)	-2.91 (-1.53)	2.30
DOBT-VI	-5.22 (0.78)	-2.96 (-1.48)	2.26

Table S3. The simulated results by using equivalent circuit of R(QR)(QR) for DSSCs with I'/I_3^- electrolyte and Co(II)/(III) electrolyte.

Compound	$R_{s}(\Omega)$	$R_{CE}\left(\Omega ight)$	$R_{res}(\Omega)$	τ_{e} (ms)
DOBT-IV-I	13.77	6.71	91.22	16.58
DOBT-V-I	17.54	8.79	57.79	11.70
DOBT-VI-I	13.69	7.47	23.18	5.35
DOBT-IV-Co	76.65	42.39	321.20	8.06
DOBT-V-Co	62.75	42.27	164.30	5.13
DOBT-VI-Co	16.89	64.19	42.99	0.82

¹HNMR, ¹³CNMR and HRMS of target compounds

Elemental Composition Report

Page 1

Elemental Composition Report

Single Mass Analysis Tolerance = 50.0 mDa / D Element prediction: Off	BE: min = -1	.5, max = 1	100.0				
Number of isotope peaks us	ed for i-FIT =	2					
Monoisotopic Mass, Even Elect 142 formula(e) evaluated with 3 Elements Used: C: 0.48 H: 0.120 N: 0.4	ron lons results within	limits (up t	o 1 closest r	esults for each	h mass)		
JL-HUA	0.00 0.	02	ECUST instit	ute of Fine Cher	m		10-Oct-2012
HJL-CL-10 52 (1.695) Cm (49:52)	~	n.					20:33:36 2: TOF MS ES- 1.06e+004
100-	N	s S	N [®] N		N	801.	3146
%-	O	C ₈ H ₁₇	OC8H	117 COL	н		803.3167 817.3300
701.4428				7	773.3270	789.3499	804.3222
705 710 715 720 7	25 730 735	740 745	750 755	760 765 77	70 775 780 785	5 790 795 800	0 805 810 815
Minimum: Maximum:	50.0	50.0	-1.5 100.0				
Mass Calc. Mass	mDa	PPM	DBE	i-FIT	i-FIT (Nort	m) Formula	
801.3146 801.3144	0.2	0.2	24.5	14.2	0.0	C46 H49	N4 05 S2

Page 1

27-Jun-2012 22:42:49 2: TOF MS ES-2.13e+003 HJL-CL-08 17 (0.640) Cm (13:19) 817.2914 ر100 818,2952 300н %-819.2946 ос.н. C.H.d 733.2496 805.3326 820.2944 805.3326 821.2518 833.3000 725 740 745 750 755 760 765 770 775 760 785 790 795 800 805 810 815 820 825 830 m/z Minimum: Maximum: -1.5 100.0 50.0 50.0 Mass Calc. Mass DBE i-FIT i-FIT (Norm) Formula mDa PPM 817.2914 817.2916 -0.2 -0.2 24.5 8.8 0.0 C46 H49 N4 04 S3