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1. Influence of the cantilever size on the actuating properties

A second bilayer cantilever with the same composition, but smaller size (when compared to 
the one described in the manuscript) was fabricated and investigated. The geometry of this 
cantilever is characterized by its length L = 2300 µm, the thickness of the active layer a1 = 60 
µm and the thickness of the conductive layer a2 = 30 µm. The aim of the size reduction was to 
achieve a faster and more efficient heat transfer to the cantilever. The actuating behaviour of 
this device was observed when changing the magnitude of the applied ac current, its 
frequency or the thermostat temperature (Fig. S1 - S3) and it was found very similar to the 
device described in the main text (Fig. 5 - 7). However, since the geometry and the thus the 
heat transfer properties are different for the two actuators, the cut-off values of Imax, f and T 
were found to be different for two devices of different geometry. 

Fig. S1. Amplitude of oscillation of the second bilayer cantilever as a function of the applied ac current 
amplitude at constant temperature and frequency (T = 20 °C, f = 0.5 Hz).
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Fig. S2. Amplitude of oscillation of the second bilayer cantilever as a function of temperature. The applied ac 
current and the frequency were fixed (Imax = 180 mA, f = 0.5 Hz).

Fig. S3. Amplitude of oscillation of the second bilayer cantilever as a function of frequency at constant 
temperature and applied ac current (T = 20 °C, Imax = 180 mA).

2. Calculation of the main actuating properties

As we have described previously,11 the curvature (k) of a bilayer strip that is purely related to 
the spin transition can be described via Timoshenko’s theory:
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where m is a ratio of layer thicknesses expressed as
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n is a ratio of the Young’s moduli (E) for the two materials
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h is the thickness of the cantilever
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and ΔL/L is the relative change of the composite linear size related to the spin transition.

In case of a small tip deflection (δ) the corresponding curvature (k) can be obtained as
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By considering a tip displacement of 1600 µm the curvature is 7.2·10-5 µm-1. 
 
In case of large displacements that are observed in our experiments the curvature must be 
calculated more precisely from figure S4.

Fig. S4. Geometry of a bent strip with a large curvature.

From this figure the length of the chord C is
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where R = 1/k.

The corresponding arc L is
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From the images of the cantilever in the LS and HS states we determined CLS = 5450 µm and 
CHS = 5980 µm. This gives αLS = 1.08 rad and αHS = 0.8 rad, hence kLS = 3.24·10-4 µm-1 and 



kHS = 2.40·10-4 µm-1. Thus the curvature related to the spin crossover k = kLS - kHS = 8.4·10-5 
µm-1, in reasonably good agreement with the curvature found from the tip displacement (eq. 
5).

Even though Timoshenko’s theory does not allow the exact determination of the principal 
mechanical properties of the composites, it still permits the estimation of some of them. 
Considering the curvature k = 8.4·10-5 µm-1 and the Young’s modulus of the composite (~ 3 
GPa), the linear strain effect of the SCO could be estimated as ~1 % (Fig. S5).

Fig. S5. Theoretical prediction of a cantilever tip displacement as a function of the linear strain induced by the 
spin transition. The blue line corresponds to the experimentally obtained maximum curvature.

The reactive force at the end of a cantilever (F) can be calculated from 
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where EI is the flexural rigidity
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and b is a width of the cantilever. These calculations yield a value of F ≈ 20 mN. 

The energetic efficiency of an actuating material can be described via the volumetric work 
density 
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where ε is the linear strain generated in the composite when the SCO takes place. This gives a 
W/V value of ca. 150 mJ cm-3.

Supplementary Movie SM1 (separate file): Oscillation of the bilayer cantilever (Imax = 300 
mA, f = 0.1 Hz, T = 20 °C).


