Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2014

Electronic Supporting Information

Title: Electrochemically Color Tunable Poly (*N***-Isopropylacrylamide) Microgel-Based Etalons**

Wenwen Xu, Yongfeng Gao, Michael J. Serpe*

Prof. M. J. Serpe, W. Xu, Y. Gao

Department of Chemistry, University of Alberta

Edmonton, Alberta, T6G 2G2, Canada

*Email: michael.serpe@ualberta.ca

Figure S1. Etalon's optical response in different pH environment, $\Delta\lambda$ is $\lambda_m - \lambda_{\text{original}}$, where λ_m is the position of the peak at a given pH (m) and $\lambda_{\text{original}}$ is the initial position of the peak when the pH=9. Each data point is the average of 3 experiments, with the error bars as the standard deviation.

Figure S2. Photographs of an etalon at: a) 0 V, b) – 3 V, c) after five days at 0 V after the -3 V in (b), and d) 2 V.

Figure S3. Proposed mechanism for color stability. The presence of Li ions makes the protonation of the deprotonated AAc groups difficult, hence the device's color is stable.

Figure S4. -3V is applied across the cell. After 7 min (as the arrow points out), the potential is removed.

 Table S1. Wavelength shift upon removal of the indicated potentials and overnight

 stabilization.

Removed potential (V)	Shift after overnight (nm)
-2	0.6±0.6
-2.5	10±7
-3	70±10