Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2014

Supporting Information

Ionothermal Synthesis of Open-Framework Metal phosphates with a Kagomé Lattice Network exhibiting Canted Anti-Ferromagnetism

Guangmei Wang^a, Martin Valldor^c, Bert Mallick^a, Anja-Verena Mudring^{a,b}*

^aInorganic Chemistry III – Materials Engineering and Characterization, Ruhr-Universität Bochum, D-44780 Bochum ^b Materials Science and Engineering, Iowa State University, Ames, IA 50011 USA and Critical Materials Institute, Ames Laboratory, Ames, IA 50011 USA

c Physics of Correlated Matter, Max-Plank-Institute for Chemical Physics of Solids, D-01187 Dresden.

Table 1a. Atomic coordinates (\times 10⁴) and equivalent isotropic displacement parameters (Å² ×10³) for (NH₄)₂Co₃(HPO₄)₂F₄ (1). U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

	X	у	Z	U(eq)
 Co(1)	8181(1)	2276(1)	5724(1)	10(1)
Co(2)	10000	5000	5000	10(1)
P(1)	11569(1)	1168(1)	6850(1)	9(1)
O(1)	8780(2)	4867(2)	6782(3)	14(1)
O(2)	10323(2)	2308(3)	5894(3)	14(1)
O(3)	7782(2)	-233(2)	4515(2)	13(1)
O(4)	12756(2)	2456(3)	7978(3)	15(1)
F(1)	8275(1)	1253(2)	8300(2)	12(1)
F(2)	6157(2)	2647(2)	5396(2)	20(1)
N(1)	5298(3)	188(4)	7486(4)	23(1)

	Х	У	Z	U(eq)	
Fe(1)	-7500	7432(1)	7675(1)	11(1)	
Fe(2)	10000	10000	12565(1)	8(1)	
Cl(1)	10000	10000	7927(1)	18(1)	
Cl(2)	5000	5000	7357(1)	19(1)	
O(1)	7500	6825(6)	9496(4)	19(1)	
O(2)	9240(5)	8307(5)	11250(4)	30(1)	
O(3)	7500	7963(7)	5862(4)	27(1)	
O(5)	7500	5521(5)	4344(5)	31(1)	
O(6)	9235(5)	8265(5)	3875(4)	35(1)	
N(1)	7500	2634(7)	9681(6)	23(2)	
N(2)	2500	7887(8)	5654(7)	26(1)	
F(1)	7500	11077(3)	12584(4)	14(1)	
P(1)	7500	7356(2)	10837(1)	9(1)	
P(2)	7500	7613(2)	4501(2)	10(1)	
O(4)	7500	5505(6)	1537(4)	37(1)	

Table 1b. Atomic coordinates (\times 10⁴) and equivalent isotropic displacement parameters (Å² \times 10³) for (NH₄)Co₃(HPO₄)₂(H₂PO₄)F₂ (**2**). U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

	X	у	Z	U(eq)
 Co(1	3401(1)	10208(1)	6932(1)	8(1)
Co(2	2500	7500	5000	7(1)
K(1)	5000	6518(2)	2500	27(1)
P(1)	1728(1)	11410(1)	5792(1)	6(1)
P(2)	5000	8732(2)	7500	9(1)
O(1)	2327(1)	10168(3)	5701(4)	14(1)
O(2)	3105(1)	7635(3)	7569(3)	13(1)
O(3)	1123(1)	10170(3)	6092(4)	12(1)
O(4)	3575(1)	12626(3)	5946(3)	14(1)
O(5)	4422(1)	9794(4)	7947(4)	20(1)
O(6)	5297(2)	7371(4)	9064(4)	21(1)
F(1)	3368(1)	11289(3)	9439(2)	11(1)

Table 1c. Atomic coordinates ($\times 10^4$) and equivalent isotropic displacement parameters (Å² ×10³) for KCo₃(HPO₄)₂(H₂PO₄)F₂ (**3**). U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

	X	у	Z	U(eq)
 Fe(1)	3416(1)	245(1)	6957(1)	10(1)
Fe(2)	2500	-2500	5000	10(1)
P(1)	1730(1)	1402(1)	5815(1)	9(1)
P(2)	5000	-1298(2)	7500	13(1)
F(1)	3380(1)	1320(2)	9450(2)	15(1)
O(1)	2331(1)	210(3)	5702(3)	16(1)
O(2)	3100(1)	-2356(3)	7593(3)	16(1)
O(3)	1144(1)	138(3)	6147(3)	14(1)
O(4)	3583(1)	2655(3)	5894(3)	17(1)
O(5)	4431(1)	-218(3)	7938(3)	22(1)
O(6)	5296(1)	-2649(3)	9043(3)	25(1)
K(1)	0	1507(2)	2500	31(1)

Table 1d. Atomic coordinates (\times 10⁴) and equivalent isotropic displacement parameters (Å² \times 10³) for KFe₃(HPO₄)₂(H₂PO₄)F₂ (**4**). U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

П 4	<u>4)2</u> C03(HFO4)2F4 (1)							
		Х	у	Z	U(eq)			
-	H(5)	12530(40)	3150(50)	8780(50)	48(13)			
	H(4)	4448(19)	-240(50)	7090(60)	64(16)			
	H(3)	5430(40)	930(40)	6620(30)	41(12)			
	H(2)	5470(30)	800(30)	8550(20)	18(8)			
	H(1)	5880(30)	-730(30)	7680(40)	25(9)			

Table 2a. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters (Å² ×10³) for for (NH₄)₂Co₃(HPO₄)₂F₄ (1)

Table 2b. Hydrogen coordinates (x 10⁴) and isotropic displacement parameters ($Å^2 \times 10^3$) for for (NH₄)Co₃(HPO₄)₂(H₂PO₄)F₂ (**2**)

-						
_		X	у	Z	U(eq)	
_	H(4)	734	2675	-368	33	
	H(6)	-1282	-775	-1872	20	
	H(1N)	-220	2050	-8591	25	
	H(2N)	322	656	-7799	25	
-						

Table 2c. Hydrogen coordinates (x 10⁴) and isotropic displacement parameters (Å² ×10³) for for $KCo_3(HPO_4)_2(H_2PO_4)F_2$ (3).

	x	у	Z	U(eq)	
H(3)	1245	9628	7052	19	
H(6)	4978	6778	9300	32	

Table 2d. Hydrogen coordinates (x 10⁴) and isotropic displacement parameters (Å² ×10³) for for $KFe_3(HPO_4)_2(H_2PO_4)F_2$ (4)

	X	у	Z	U(eq)
H(6)	5763(13)	-2450(80)	9600(70)	9600(70)
H(3)	1260(40)	-710(80)	7010(80)	7010(80)

Table 3a.Hydrogen bonds [Å/°] for (NH₄)₂Co₃(HPO₄)₂F₄ (1)

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)	
O(4)-H(5)O(3)#3	0.874(19)	1.84(2)	2.711(3)	174(5)	
N(1)-H(4)O(3)#7	0.883(13)	2.26(2)	3.049(3)	148(3)	
N(1)-H(4)F(2)#7	0.883(13)	2.54(4)	3.091(3)	121(4)	
N(1)-H(3)F(2)	0.891(13)	1.838(16)	2.702(3)	163(3)	
N(1)-H(2)F(2)#6	0.894(13)	1.791(16)	2.660(3)	163(3)	
N(1)-H(1)O(4)#4	0.885(13)	2.081(18)	2.911(3)	156(3)	

Symmetry transformations used to generate equivalent atoms: #1 x, -y+1/2, z-1/2 #2 -x+2, -y+1, -z+1 #3 -x+2, y+1/2, -z+3/2 #4 -x+2, y-1/2, -z+3/2 #5 -x+2, -y, -z+1 #6 x, -y+1/2, z+1/2 #7 -x+1, -y, -z+1

Table 3b.Hydrogen bonds $[Å/^{\circ}]$ for $(NH_4)Co_3(HPO_4)_2(H_2PO_4)F_2$ (2)

 D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
O(4)-H(4)F(1)#6	0.90	1.94	2.816(4)	165.7
O(6)-H(6)O(2)#2	0.95	2.00	2.929(4)	163.3
O(6)-H(6)F(1)#8	0.95	2.59	3.140(4)	117.3
N(1)-H(1N)O(4)#9	0.97	2.28	2.912(3)	122.5
N(1)-H(1N)O(2)#9	0.97	2.42	2.959(3)	115.1
N(1)-H(2N)O(6)#10	0.93	2.09	2.977(3)	157.7

1000000000000000000000000000000000000	Table 3c.Hydrogen bor	nds [Å/°]	for KCo ₃	$(HPO_4)_2$	$(H_2PO_4)F_2$	(3)
---------------------------------------	-----------------------	-----------	----------------------	-------------	----------------	-----

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)	
O(3)-H(3)O(4)#4	0.82	2.10	2.897(4)	163.7	
O(6)-H(6)O(3)#4	0.82	2.45	3.233(4)	160.6	
C		1	10 1/0 //0 /	1 10 11 110 110	

Table 3d.Hydrogen bonds $[Å/^{\circ}]$ for KFe₃(HPO₄)₂(H₂PO₄)F₂ (4)

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)	
O(6) U(6) E(1)#14	0.05(2)	1.01(2)	2827(2)	162(5)	
$O(0)-\Pi(0)F(1)\#14$	0.93(2)	1.91(3)	2.827(3)	102(3)	
O(3)-H(3)O(4)#4 0	0.91(2)	1.99(2)	2.892(3)	1/0(/)	

- Figure. S1 Experimental and simulated X-ray powder diffraction patterns $(NH_4)_2Co_3(HPO_4)_2F_4$ (1), $(NH_4)Co_3(HPO_4)_2(H_2PO_4)F_2$ (2), $KCo_3(HPO_4)_2(H_2PO_4)F_2$ (3), and $KFe_3(HPO_4)_2(H_2PO_4)F_2$ (4)
- Figure S2 The IR spectra of $(NH_4)_2Co_3(HPO_4)_2F_4$ (1), $(NH_4)Co_3(HPO_4)_2(H_2PO_4)F_2$ (2), KCo₃(HPO₄)₂(H₂PO₄)F₂ (3), and KFe₃(HPO₄)₂(H₂PO₄)F₂ (4)
- Figure S3 TG curves of $(NH_4)_2Co_3(HPO_4)_2F_4$ (1), $(NH_4)Co_3(HPO_4)_2(H_2PO_4)F_2$ (2), KCo₃(HPO₄)₂(H₂PO₄)F₂ (3), and KFe₃(HPO₄)₂(H₂PO₄)F₂ (4)
- Figure S4 Thermal ellipsoid plot (50% probability) and atomic labeling scheme of $(NH_4)_2Co_3(HPO_4)_2F_4$ (1), $(NH_4)Co_3(HPO_4)_2(H_2PO_4)F_2$ (2), $KCo_3(HPO_4)_2(H_2PO_4)F_2$ (3), and $KFe_3(HPO_4)_2(H_2PO_4)F_2$ (4)
- Figure S5 χ T-T curves of (NH₄)₂Co₃(HPO₄)₂F₄ (1), (NH₄)Co₃(HPO₄)₂(H₂PO₄)F₂ (2), KCo₃(HPO₄)₂(H₂PO₄)F₂ (3), and KFe₃(HPO₄)₂(H₂PO₄)F₂ (4)

Figure S1a

Figure S1b

Figure S1c

Figure S1d

Figure S2

Figure S3

Figure S4b

Figure S4c

Figure S4d

Figure S5