ELECTRONIC SUPPLEMENTARY INFORMATION

Substituent effect on the crystal packing and electronic coupling of tetrabenzocoronenes: a structure-property correlation

Chi-Hsien Kuo,¹ Ding-Chi Huang,² Wei-Tao Peng,¹ Kenta Goto,³ Ito Chao,^{1,*} and Yu-Tai Tao^{1,2,*}

¹Institute of Chemistry, Academia Sinica

Taipei, Taiwan, Republic of China

²Department of Chemistry, National Tsing-Hua University,

Hsin-chu, Taiwan, Republic of China

°Institute of Materials Chemistry and Engineering, Kyushu University, Fukuoka, Japan

E-mail: <u>ytt@gate.sinica.edu.tw</u>, <u>ichao@chem.sinica.edu.tw</u>

Materials and General Methods

All chemicals were purchased from *Acros*, *Alfa Aesar*, *Merck*, and *Sigma-Aldrich*. Methylene chloride and toluene were distillated over calcium hydride under nitrogen atmosphere. All reactions were carried out using conventional *Schlenk* technique under nitrogen atmosphere. ¹H NMR spectra were recorded on a *Bruker* AMX 500 spetrometer. Proton chemical shifts (δ) are reported in ppm relative to the methine singlet at 7.24 ppm for the residual CHCl₃ in CDCl₃, 5.32 ppm for CH₂Cl₂ in CD₂Cl₂, or 2.50 ppm for DMSO in d₆-DMSO. Molecular weight was determined by HR-FAB/HR-EI on a JMS-700 double focusing mass spectrometer (*JEOL*, Tokyo, Japan). MALDI mass spectrometry was recorded on a DE-PRO mass spectrometer (*Applied Biosystem*). Thermo gravimetric analysis (TGA) was carried out on a *Perkin Elmer* Pyris 1 thermogravimetric analyzer (heating rate: 10 °C / min). Reported decomposition temperatures represent the temperature observed at 5 % mass loss. The HOMO values were measured on a AC-2 photoelectron spectrometer (*Riken Keiki*) in solid state under ambient conditions. UV-Visible spectra were measured using a *Jasco* V-530 double beam spectrophotometer.

Synthetic Details

All reactions were carried out under similar conditions according to our previously reported publication as summarized in **scheme 1**.¹ The detailed synthetic procedure of dimethyl - substituted derivative **1d** was selected as the demonstrating example.

Scheme 1 Synthesis of tetrabenzocoronenes with unsymmetrical substitution

Reagents and conditions: I) CBr₄, PPh₃, 80 °C; II) substituted phenylboronic acid, K₂CO₃, Pd(PPh₃)₄, toluene, ethanol/H₂O, reflux; III) I₂, propylene oxide, benzene, hv; IV) FeCl₃,CH₂Cl₂

Synthesis of 9-(Dibromomethylene)-10-(diphenylmethylene)-9,10-dihydroanthracene (2):

A mixture of carbon tetrabromide (11.7 g, 45 mmol), triphenylphosphine (8.32 g, 25 mmol), 9-Benzhydrylidene-10-anthrone (4 g, 11 mmol) was stirred in toluene (100 mL) at 80 °C overnight. After cooling to room temperature, the mixture was filtered, and the filtrate was concentrated, followed by washing with ethanol to give pure product as light yellow solid (4.56 g, 80 %).

¹H NMR (500 MHz, CDCl₃) δ 7.76 (d, *J* = 8.0 Hz, 2H), 7.30-7.07 (m, 12H), 6.98-6.86 (m, 4H).

¹³C NMR (125 MHz, CDCl₃) δ 141.89, 141.01, 140.87, 137.08, 136.68, 134.25, 129.48, 128.20, 127.03, 126.75, 126.55, 125.34, 88.41.

HRMS (MALDI) (m/z): [M+H]⁺ calcd for C₂₈H₁₈Br₂ : 511.9775, found: 513.9793.

Anal. Calcd. C, 65.40; H, 3.53. Found: C, 65.5636; H, 3.7544.

9-(Di-p-tolylmethylene)-10-(diphenylmethylene)-9,10-dihydroanthracene (3d):

A mixture of **2** (3 g, 5.8 mmol), tetrakis(triphenylphosphine) palladium(0) (0.34 g, 0.3 mmol), p-tolylboronic acid (2.38 g, 17.5 mmol), and toluene (100 mL), ethanol (2 mL), water (2 mL) was refluxed under nitrogen atmosphere overnight. After cooling to room temperature, the mixture was washed with water, and the organic layer was dried over anhydrous magnesium sulfate. The

crude product was purified by silica-gel column chromatography using hexane: dichloromethane = 2:1 as the eluent to give pure product as white solid (2.88 g, 92 %).

¹H NMR (500 MHz, CDCl₃) δ 7.39 (d, J = 7.5 Hz, 4H), 7.28-7.24 (m, 8H), 7.17 (t, J = 7.3 Hz, 2H), 7.06 (d, J = 8.0 Hz, 4H), 7.00-6.95 (m, 4H), 6.71-6.69 (m, 4H), 2.28 (s, 6H).

¹³CNMR (125 MHz, CDCl₃) δ 142.58, 139.91, 139.80, 139.65, 138.09, 137.79, 136.11, 135.79, 135.13, 129.73, 129.53, 128.88, 128.18, 127.96, 127.84, 126.59, 125.11, 124.97, 21.12.

HRMS (MALDI) (m/z): [M+H]⁺ cal. For C₄₂H₃₃: 537.2582, found: 537.2596.

Anal. Calcd. C, 93.99; H, 6.01. Found: C, 93.7045; H, 6.1985.

9-(Bis(4-fluorophenyl)methylene)-10-(diphenylmethylene)-9,10-dihydroanthracene (3b):

¹H NMR (500MHz, CDCl₃) δ 7.37-7.19 (m, 14H), 6.99-6.92 (m, 8H), 6.74-6.72 (m, 4H);

¹³CNMR (125 MHz, CDCl₃) δ 162.69, 160.73, 142.39, 140.13, 137.81, 136.61, 135.39, 131.34, 131.28, 129.62, 128.24, 128.08, 127.77, 126.76, 125.39, 125.29, 115.36, 115.19.

HRMS (FAB+) (m/z): $[M]^+$ cal. for $C_{40}H_{26}F_2$: 544.2003, found: 544.2004.

Anal. Calcd. C, 88.21; H, 4.81. Found C, 88.1831; H, 4.8863.

9-(Bis(4-chlorophenyl)methylene)-10-(diphenylmethylene)-9,10-dihydroanthracene (3c)

¹H NMR (500 MHz, CDCl₃) δ 7.42-7.23 (m, 18H), 7.04-6.98 (m, 4H), 6.79-6.75 (m, 4H);

¹³CNMR (125 MHz, CDCl₃) δ142.33, 140.52, 140.29, 137.76, 137.23, 137.04, 136.83, 135.28, 132.88, 131.09, 129.59, 128.57, 128.27, 128.13, 127.74, 126.80, 125.54, 125.41.

HRMS (FAB+) (m/z): $[M]^+$ cal. for $C_{40}H_{26}Cl_2$: 576.1412; found: 576.1410.

Anal. Calcd. C, 83.19; H, 4.54. Found C: 83.4092; H: 4.7317.

9-(Bis(4-(trifluoromethyl)phenyl)methylene)-10-(diphenylmethylene)-9,10dihydroanthracene (3e):

¹H NMR (500MHz, CDCl₃) δ 7.55 (d, *J* = 8.5 Hz, 4H), 7.50 (d, *J* = 8.5 Hz, 4H), 7.38 (d, *J* = 8.0 Hz, 4H), 7.29 (t, *J* = 7.5 Hz, 4H), 7.21 (t, *J* = 7.5 Hz, 2H), 7.02-6.89 (m, 4H), 6.76-6.73 (m, 4H).

¹³CNMR (125 MHz, CDCl₃) δ 145.39, 142.23, 140.68, 137.72, 136.71, 136.60, 134.99,

130.14, 129.51, 129.34, 129.08, 128.32, 128.27, 127.65, 126.87, 125.81, 125.48, 125.43.

HRMS (FAB+) (m/z): $[M]^+$ cal. for C₄₂H₂₆F₆: 644.1939; found: 644.1946.

Anal. Calcd. C, 78.25; H, 4.07. Found: C, 78.2664; H, 4.0574.

9-(Bis(4-(tert-butyl)phenyl)methylene)-10-(diphenylmethylene)-9,10-dihydroanthracene (3f):

¹H NMR (500 MHz, CDCl₃) δ 7.41 (d, *J* = 7.5 Hz, 4H), 7.31-7.26 (m, 12H), 7.19 (t, *J* = 7.3 Hz, 2H), 6.97-6.93 (m, 4H), 6.69-6.66 (m, 4H), 1.28 (s, 18H).

¹³CNMR (125 MHz, CDCl₃) δ149.37, 142.69, 139.86, 139.58, 138.07, 136.77, 135.78, 135.09, 129.75, 129.29, 128.21, 128.08, 127.81, 126.58, 125.02, 124.99, 124.85, 34.44, 31.36.

HRMS (MALDI) (m/z): [M+H]⁺ cal. for C₄₈H₄₅: 620.3443; found: 620.3459.

Anal. Calcd. C, 92.86; H, 7.14. Found: C, 92.8569; H, 7.1301.

9-(Bis(3,5-difluorophenyl)methylene)-10-(diphenylmethylene)-9,10-dihydroanthracene (3g):

¹H NMR (500 MHz, CDCl₃) δ 7.36 (d, *J* = 8.3 Hz, 4H), 7.28 (t, *J* = 7.5 Hz, 4H), 7.19 (t, *J* = 7.5 Hz, 2H), 7.00-6.70 (m, 14H).

¹³CNMR (125 MHz, CDCl₃) δ 162.8, 144.45, 142.08, 141.00, 138.36, 137.66, 136.46, 134.93, 134.78, 129.49, 128.33, 128.29, 127.27, 126.92, 126.06, 125.62, 112.93, 102.82.

HRMS (MALDI) (m/z): [M]⁺ cal. for C₄₀H₂₄F₄: 572.1188; found: 572.1201.

Anal. Calcd. C, 82.75; H, 4.17. Found: C, 82.8586; H, 4.2496.

9-(Bis(3,4,5-trifluorophenyl)methylene)-10-(diphenylmethylene)-9,10-dihydroanthracene (3h):

¹H NMR (500 MHz, CDCl₃) δ 7.34 (d, *J* = 7.5 Hz, 4H), 7.28 (t, *J* = 7.8 Hz, 4H), 7.20 (t, *J* = 7.5 Hz, 2H), 7.02-6.79 (m, 12H);

¹³C NMR (125 MHz, CDCl₃) δ 152.17, 141.94, 141.24, 139.20, 139.12, 137.68, 137.00, 136.19, 134.72, 133.15, 129.42, 128.44, 128.38, 127.12, 127.04, 126.30, 125.76, 114.18.

HRMS (EI+) (m/z): $[M]^+$ cal. for C₄₀H₂₂F₆: 616.1626; found: 616.1628.

Anal. Calcd. C, 77.92; H, 3.60. Found: C: 77.7695; H: 3.7347.

Synthesis of 2, 7-Dimethyltetrabenzo[a,d,j,m]coronene (1d):

A mixture of **3d** (1.2 g, 9.31 mmol), iodine (1.7 g, 6.7 mmol), propylene oxide (48 mL) in benzene (700 mL) was stirred under UV- irradiation under nitrogen atmosphere for 16 hours. The solvent was rotary evaporated, and the mixture was filtered, washed with methanol and dried

under vacuum to give crude half-cyclized product. The crude product was dissolved in dry dichloromethane (700 mL), to which a solution of anhydrous iron chloride (4.38 g) in nitromethane (48 mL) was added in dropwisely. After stirring under nitrogen atmosphere for one hour, the reaction was stopped by adding methanol (500 mL). Yellow precipitate was filtered and purified by vacuum sublimation to give pure product as light yellow solid (0.4 g 33 %).

¹H NMR (500 MHz, CD₂Cl₂,) δ 9.37 (s, 4H), 9.24-9.19 (m, 4H), 9.09 (d, *J* = 8.5 Hz, 2H), 8.97 (s, 2H), 7.96-7.85 (m, 4H), 7.69 (d, *J* = 8.0 Hz, 2H), 2.83 (s, 6H).

HRMS (EI+) (m/z): [M]⁺ cal. for C₄₂H₂₄ : 528.1878; found: 528.1877.

Anal. Calcd. C, 95.42; H, 4.58. Found: C, 95.3003; H, 4.6171.

2, 7-Difluorotetrabenzo[a,d,j,m]coronene (1b):

HRMS (EI+) (m/z): [M]⁺ cal. for C₄₀H₁₈F₂ : 536.1377; found: 536.1371.

Anal. Calcd. C, 89.54; H, 3.97; F, 3.38. Found C, 89.3063; H, 3.4131.

2, 7-Dichlorotetrabenzo[a,d,j,m]coronene (1c):

HRMS (MALDI) (m/z): [M]⁺ cal. for C₄₀H₁₈Cl₂ : 568.0786; found: 568.0803.

Anal. Calcd. C, 84.36; H, 3.19. Found: C, 84.2955; H, 3.2164.

2, 7-Bis(trifluoromethyl)tetrabenzo[a,d,j,m]coronene (1e)

HRMS (EI+) (m/z): [M]⁺ cal. for C₄₂H₁₈F₆: 636.1313; found: 636.1314. Anal. Calcd. C, 79.24; H, 2.85. Found C, 79.2738; H, 2.8012.

2, 7-Di-tert-butyltetrabenzo[a,d,j,m]coronene (1f):

¹H NMR (500 MHz, d₆-DMSO) δ 9.74 (d, *J* = 9.0 Hz, 2H), 9.66 (d, *J* = 9.0 Hz, 2H), 9.44 (d, *J* = 7.5 Hz, 2H), 9.32 (s, 2H), 9.23-9.17 (m, 4H), 8.09-7.97 (m, 6H), 1.65 (s, 18H).

HRMS (MALDI) (m/z): $[M]^+$ cal. for C₄₈H₃₆: 620.3443; found: 620.3459.

Anal. Calcd. C, 94.08; H, 5.92. Found C, 94.0510; H, 5.9396.

1, 3, 6, 8-Tetrafluorotetrabenzo[a,d,j,m]coronene (1g):

HRMS (MALDI) (m/z): [M]⁺ cal. for C₄₀H₁₆F₄: 572.1188; found: 572.1201. Anal. Calcd. C, 83.91; H, 2.82. Found C, 83.8950; H, 2.7235.

1, 2, 3, 6, 7, 8-Hexafluorotetrabenzo[a,d,j,m]coronene (1h):

HRMS (EI+) (m/z): $[M]^+$ cal. for $C_{40}H_{14}F_6$: 608.1000; found: 608.1003 Anal. Calcd. C, 78.95; H, 2.32. Found C, 78.9268; H, 2.6950.

Resutls of theoretical calculation

Table. The ionization potential, electron affinity, reorganization energy, electronic couplings and mobilities of compound **1a**.

dimer	IP (eV) ^a	EA (eV) ^a	λ^+ (meV)	t+(meV)	k_{et} (s ⁻¹)	$\mu^{+}(cm^{2}V^{-1}s^{-1})$	$d_{c-c}(A)$
1	6.343	1.135	132	41	2.12×10 ¹³	0.58	3.77 ^b
2				2	6.25×10 ¹⁰	0.01	10.67
3				<1	<10 ¹⁰	< 0.01	14.16
4				1	<1010	< 0.01	16.25

^a B3LYP/6-31+G(d)//B3LYP/6-31G(d,p) with Gaussian 09.

 $^{\rm b}$ For dimer 1, $d_{\rm c\text{-}c}$ is the same as $d_{\rm axis}.$

Table. The ionization potential, electron affinity, reorganization energy, electronic couplings and mobilities of compound **1b**.

dimer	IP (eV) ^a	EA (eV) ^a	λ^+ (meV)	t ⁺ (meV)	k_{et} (s ⁻¹)	$\mu^+(cm^2V^-)^{1}s^{-1}$	d _{axis} (Å)
$1 \rightarrow 1'$ (parallel) ^b	6.480	1.279	151	28	7.85x10 ¹²	0.22	3.77
$1 \rightarrow 1' (anti-F_{out})^b$				28	7.85x10 ¹²	0.22	3.77
$1 \rightarrow 1$ ' (anti- F_{in}) ^b				22	4.84×10^{12}	0.13	3.77

^b The exact positions of fluorine atoms are not known due to disorders in the X-ray coordinates. Therefore, parallel and antiparallel dimers are both calculated. Because the shift along the long molecular axis, the relationships for the antiparallel dimers along the \Box -stacking direction are 1) with the fluorine atoms of being farther from another molecule (anti-F_{out}) and 2) being closer to another molecule (anti-F_{in}). In Table 2, the antiparallel result is presented because it is more likely in terms of the molecular dipole-dipole interaction.

Table. The ionization potential, electron affinity, reorganization energy, electronic couplings and mobilities of compound **1c**.

dimer	IP (eV) ^a	EA (eV) ^a	λ^+ (meV)	t ⁺ (meV)	k_{et} (s ⁻¹)	$\mu^{+}(cm^{2}V^{-1}s^{-1})$	$d_{c-c}(A)$
1→1'	6.502	1.379	143	22	5.38x10 ¹²	0.15	3.77 ^b
1→2				1	1.11×10^{10}	< 0.01	10.79
2→3				2	4.44×10^{10}	0.01	12.13
6→9				<1	<10 ¹⁰	< 0.01	14.15
2→5				1	1.11x10 ¹⁰	< 0.01	14.18
3→6				1	1.11×10^{10}	< 0.01	14.71
5→8				1	1.11×10^{10}	< 0.01	14.75

 $^{\rm b}$ For dimer 1, $d_{\rm c\text{-}c}$ is the same as $d_{\rm axis}.$

Table. The ionization potential, electron affinity, reorganization energy, electronic couplings and mobilities of compound **1d**.

dimer	IP (eV) ^a	EA (eV) ^a	λ⁺(meV) ^ь	t⁺(meV)℃	k _{et} (s ⁻¹)	μ+(cm²V ⁻¹ s ⁻¹)	d _{c-c} (Å) ^d
1→1'	6.203	1.062	134	7	6.14x10 ¹¹	0.02	4.23
						(0.02) ^e	(3.74) ^e
1→2				2	5.01x10 ¹⁰	0.02	13.21
2→3				2	5.01x10 ¹⁰	0.02	12.80
2'→3				<1	<1010	< 0.01	12.14

^b Calculated with d_{axis} .

Table. The ionization potential, electron affinity, reorganization energy, electronic couplings and mobilities of compound **1e**.

dimer	IP (eV) ^a	EA (eV) ^a	λ^+ (meV)	t ⁺ (meV)	k_{et} (s ⁻¹)	$\mu^{+}(cm^{2}V^{-1}s^{-1})$	$d_{c-c}(A)$
1→1'	6.720	1.624	148	35	1.27×10^{13}	0.33 ^b	3.65 ^b
1→2				<1	<10 ¹⁰	< 0.01	13.20
1'→2				2	4.16x10 ¹⁰	0.02	13.99
2→3				1	1.04×10^{10}	< 0.01	15.07
2'→3				3	9.36x10 ¹⁰	0.04	14.08

^b Calculated with d_{axis} .

Table. The ionization potential, electron affinity, reorganization energy, electronic couplings and mobilities of compound **1f**.

dimer	IP (eV) ^a	EA (eV) ^a	λ⁺(meV) ^ь	t⁺(meV)⁰	k _{et} (s ⁻¹)	μ+(cm ² V ⁻¹ s ⁻¹)	d _{c-c} (Å) ^d
3→1'	6.170	1.078	136	79	7.61x10 ¹³	3.43	4.83
						(2.17) ^e	(3.84) ^e
1→2				56	3.82x10 ¹³	3.14	6.52
						(1.09) ^e	(3.84) ^e
2→3				40	1.95x10 ¹³	1.54	6.39
						(0.56) ^e	(3.84) ^e

Table. The ionization potential, electron affinity, reorganization energy, electronic couplings and mobilities of compound **1g**.

dimer	IP (eV) ^a	EA (eV) ^a	λ^+ (meV)	t ⁺ (meV)	k_{et} (s ⁻¹)	$\mu^{+}(cm^{2}V^{-1}s^{-1})$	d _{axis} (Å)
$1 \rightarrow 1$ ' (parallel) ^b	6.627	1.513	135	46	2.61×10^{13}	0.71	3.75
$1 \rightarrow 1$ ' (anti-F _{out}) ^b				41	2.08×10^{13}	0.56	3.75
$1 \rightarrow 1$ ' (anti- F_{in}) ^b				43	2.28x10 ¹³	0.62	3.75

^b The exact positions of fluorine atoms are not known due to disorders in the X-ray coordinates. Therefore, parallel and antiparallel dimers are both calculated. Because the shift along the long molecular axis, the possible relationships for the antiparallel dimers are 1) with the fluorine atoms of being farther from another molecule (anti- F_{out}) and 2) being closer to another molecule (anti- F_{in}).

Table. The ionization potential, electron affinity, reorganization energy, electronic couplings and mobilities of compound **1h**.

dimer	IP (eV) ^a	EA (eV) ^a	λ^+ (meV)	t ⁺ (meV)	k_{et} (s ⁻¹)	$\mu^{+}(cm^{2}V^{-1}s^{-1})$	$d_{c-c}(A)$
1→3	6.736	1.630	147	75	5.93x10 ¹³	1.47 ^b	3.58 ^b
3→5				59	3.67×10^{13}	0.91 ^b	3.58 ^b
2→3				<1	<1010	< 0.01	11.73
4→5				2	4.22×10^{10}	0.01	12.05
3→7				2	4.22×10^{10}	0.01	13.29
1→7				<1	<10 ¹⁰	< 0.01	14.93

 b Calculated with d_{axis} .

TFTBC

Table. The ionization potential, electron affinity, reorganization energy, electronic couplings and mobilities of compound **TFTBC**.

dimer	IP (eV) ^a	EA (eV) ^a	$\lambda^{\!\!+\!}(meV)$	t ⁺ (meV)	k_{et} (s ⁻¹)	$\mu^{+}(cm^{2}V^{-1}s^{-1})$	$d_{c-c}(A)$
1 → 1'	6.618	1.424	169	41	1.34×10^{13}	0.36	3.72 ^b
1→2				3	7.15x10 ¹⁰	0.02	11.31
1→3				<1	<10 ¹⁰	< 0.01	14.97

^aB3LYP/6-31+G(d)//B3LYP/6-31G(d,p) with Gaussian 09.

^b d_{c-c} is the same as d_{axis} .

тствс

Table. The ionization potential, electron affinity, reorganization energy, electronic couplings and mobilities of compound **TCTBC**.

dimer	IP (eV) ^a	EA (eV) ^a	λ^+ (meV)	t ⁺ (meV)	k_{et} (s ⁻¹)	$\mu^{+}(cm^{2}V^{-1}s^{-1})$	$d_{c-c}(A)$
1 → 1'	6.652	1.609	154	51	2.50×10 ¹³	0.68	3.75 ^b
1→3				10	9.63×10 ¹¹	0.36	13.87
1→3'				4	1.54×10 ¹¹	0.06	14.31
1 → b				4	1.54×10 ¹¹	0.06	14.39

^aB3LYP/6-31+G(d)//B3LYP/6-31G(d,p) with Gaussian 09.

^b d_{c-c} is the same as d_{axis} .

TMTBC

top layer and black ones are at the bottom layer.

Table. The ionization potential, electron affinity, reorganization energy, electronic couplings and mobilities of compound **TMTBC**.

Dimer	IP (eV) ^a	EA (eV) ^a	□+(meV)	t ⁺ (meV)	k_{et} (s ⁻¹)	$\mu^{+}(cm^{2}V^{-1}s^{-1})$	$d_{c-c}(A)$
1→1'	6.091	0.990	136	20	4.88x10 ¹²	0.13 ^b	3.66 ^b
1→3				2	4.88x10 ¹⁰	0.02	13.68
1'→3'				9	9.87x10 ¹¹	0.24	11.32
1→2				<1	<10 ¹⁰	< 0.01	12.99
1'→2				1	1.22×10^{10}	0.01	14.96

^a B3LYP/6-31+G(d)//B3LYP/6-31G(d,p) with Gaussian 09.

^b Calculated with d_{axis} .

Reference

¹ Pola, S.; Kuo, C. –H.; Peng, W. –T., Islam, Md. M.; Chao, I.; Tao, Y. T. *Chem. Mater.* **2012**, *24*, 2566.