Boron-Dipyrromethene Based Multi Anionic Sensor and a Specific Cationic Sensor for Fe³⁺

Vellanki Lakshmi and Mangalampalli Ravikanth*†

[†]Department of Chemistry, Indian Institute of Technology Bombay, Powai, *Mumbai-400 076, India. E-mail: <u>ravikanth@chem.iitb.ac.in</u>*

Figure S1: The HRMS mass spectrum of compound 1.	3
Figure S2: The ¹ H NMR spectrum of compound 1 recorded in $CDCl_{3}$.	4
Figure S3: ¹⁹ F NMR spectrum of compound 1 in CDCl ₃ .	5
Figure S4: ¹¹ B NMR spectrum of compound 1 in CDCl ₃ .	5
Figure S5: The HRMS of compound 2a.	6
Figure S6: The ¹ H NMR spectrum of compound $2a$ recorded in CDCl _{3.}	7
Figure S7: ¹⁹ F NMR spectrum of compound 2a in CDCl ₃ .	8
Figure S8: ¹¹ B NMR spectrum of compound 2a in CDCl ₃ .	9
Figure S9: The HRMS of compound 2b.	10
Figure S10: The ¹ H NMR spectrum of compound 2b recorded in CDCl _{3.}	11
Figure S11: ¹⁹ F NMR spectrum of compound 2b in CDCl ₃ .	12
Figure S12: ¹¹ B NMR spectrum of compound 2b in CDCl ₃ .	13
Figure S13: Absorption spectra of compound 2a (5 x 10 ⁻⁶ M) in the presence	e of
various anions (50 equivalents) in9:1 ratio of CH ₃ CN:H ₂ O.	14
Figure S14: Absorption spectra of compound $2a$ (5 x 10 ⁻⁶ M), with different con	c. of
CH_3COO^- solution (0–5 equivalents) in CH_3CN .	15
Figure S15: Absorption spectra of compound $2a$ (5 x 10 ⁻⁶ M), with different con	c. of
$H_2PO_4^{}$ solution (0–40 equivalents) in CH ₃ CN.	16
Scheme S1: Intermolecular hydrogen bonding interactions of compound 2a	with
anion and solvents.	17
Figure S16: The HRMS mass spectrum of compound 4 generated by addition	of 1
equivalent of Fe^{3+} to compound 2a .	18
Figure S17: The HRMS mass spectrum of compound 3 generated by the addition	on of
100 equivalents of Fe^{3+} .	19
Figure S18: (a) ¹ H NMR spectrum, (b) ¹⁹ F NMR and (c) ¹¹ B NMR spectrum	n of
compound 3 generated by addition of 100 equivalents of Fe^{3+} to compound 2a .	20

Figure S19: The overlay of normalized absorption (solid line) and emission spectra (dotted line) of compound 2a in CH₃CN. 21 Figure S20: Absorption and emission spectra of compound 1 in presence of Fe^{3+} 22 Figure S21: Emission spectra of compound 1 (10⁻⁵ M) upon titration with 0-1 equiv. of Fe³⁺ solution in CH₃CN. The inset shows the plot of I/I_{max} vs. [Fe³⁺] 23 Figure S22: Emission spectral changes of BODIPY 2a (10 µM) upon titration with 45 equivalents of Fe³⁺ ($\lambda_{ex} = 488$ nm) in CH₃CN. 24 Figure S23: (a) Relative absorption changes of compound 1 in the presence of Fe^{3+} : (a) 0 to 1 equivalent; (b) 1 to 100 equivalents. Relative emission changes of compound 1 (10⁻⁵ M) in the presence of Fe^{3+} excited at 488 nm (c) 0 to 1 equivalent (d) 1 to 100 equivalents in CH_3CN . 25 Figure S24: Limit of detection for compound 2a. 26 Figure S25: Absorption spectra of compound 2a (10 µM) in an aqueous acetate buffer solution (0.1 M) as a function of the pH. 27 Table S1: Crystal data for compound 1 28

Elemental Composition Report							Page 1
Single Mass Analysis (displaying only valid results) Tolerance = 50.0 PPM / DBE: min = -1.5, max = 100.0 Isotope cluster parameters: Separation = 1.0 Abundance = 1.0%							
Monoisotopic Mass, Odd and Even Electron lons 28 formula(e) evaluated with 1 results within limits (up to 50 closest results for each mass)							
Micromass : Q-Tof micro (YA-105)		Dept. C	Of Chemistry	/ I.I.T. (B)			10-Apr-201212:59:45
MRK-VL-PHHYDRA 65 (0.650) AM (Top,5, Ht,5000.0,5	556.28,1.00);	; Sm (Md, 6.	00); Sb (5,40.00); Cm (32:65)		TOF MS ES+
100 		(M-F) ⁺ 499.	0.2247	0.2273			
102.1242		فتار مصبحا وال		542.2096	764.5	724	879.3184 963.6307
100 200	300	400	500	600	700	800	m/z m/z 900
Minimum: Maximum:	200.0 50	0.0 1	-1.5 100.0				
Mass Calc. Mass	mDa Pl	PPM D	DBE	Score	Formula		
519.2290 519.2280	1.0 1	.9 2	20.5	1	C30 H26	B N6	F2

Figure S1: The HRMS of compound 1.

Figure S2: The ¹H-NMR spectrum of compound 1 recorded in CDCl₃

Figure S3: ¹⁹F NMR spectrum of compound 1 in CDCl₃. The inset shows the expansion

Figure S4: ¹¹B NMR spectrum of compound 1 in CDCl₃. The inset shows the expansion.

Figure S5: The HRMS mass spectrum of compound 2a.

Figure S6: The ¹H-NMR spectrum of compound 2a recorded in CDCl_{3.}

Figure S7: ¹⁹F NMR spectrum of compound 2a in CDCl₃. The inset shows the expansion

Figure S8: ¹¹B NMR spectrum of compound 2a in CDCl₃. The inset shows the expansion

							-
Single M	ass Analysis ((displayi	ng only v	alid resu	lits)		
Tolerance	∋ = 10.0 PPM	/ DBE:	min = -1.5	5, max =	200.0		
Isotope c	uster paramete	ers: Sepa	aration = 1	1.0 Abur	ndance = 1	1.0%	
Monoisotop	ic Mass, Odd and	I Even Elec	tron lons				
11056 form	ula(e) evaluated v	with 1 resul	ts within lim	its (all resu	its (up to 10	00) for each mass)	
Waters(Micro	mass) : Q-Tof micro(Y	(A-105)	Dep	t. Of Chemis	try - I.I.T.(B)		06-Nov-201215:02
C26H23BF2N	402	A (Con A 80)	00 14 5000 0 1	56 28 1 001	Sm /SG 3x4 0	0): Sh (5 40 00): Cm (18:62)	TOF MS E
	H-UNP 21 (0.209) AN	W (Cen,4, ou.	оо, пі, 5000.0,	50.20,1.00),	011133. 34.0	an ab (0,40.00), on (10.02)	2.40
100-							
			•				
							A4
% -	342.2410						587.1636 (NI+N
1	331 1962		26				607 3910
	36	8.4073					
0 44444444444 300	320 340 360) 380	400 420	440 4	60 480	500 520 540 560	580 600
Mind mum				-1 5			
Minimum: Maximum:		50.0	10.0	200.0			
	Calc. Mass	mDa	PPM	DBE	Score	Formula	
Mass			+				
Mass							

Figure S9: The HR-MS of compound 2b

Figure S9: The ¹H NMR spectrum of compound **2b** recorded in CDCl₃.

Figure S10: ¹⁹F NMR spectrum of compound **2b** in CDCl₃. The inset shows the expansion

Figure S11: ¹¹B NMR spectrum of compound 2b in CDCl₃. The inset shows the expansion

Figure S13: Absorption spectra of compound 2a (5 x 10⁻⁶ M) in the presence of various anions (50 equivalents) in 9:1 ratio of CH₃CN:H₂O.

Figure S14: Absorption spectra of compound **2a** (5 x 10^{-6} M), with different conc. of CH₃COO⁻ solution (0–5 equivalents) in CH₃CN.

Figure S15: Absorption spectra of compound **2a** (5 x 10⁻⁶ M), with different conc. of $H_2PO_4^-$ solution (0–40 equivalents) in CH₃CN.

Scheme S1: Intermolecular hydrogen bonding interactions of compound 2a with anion and solvents.

Figure S16: The HRMS of compound 4 generated by addition of 1 equivalent of Fe^{3+} to compound 2a.

Figure S17: The HRMS of compound 3 generated by the addition of 100 equivalents of Fe^{3+} .

Figure S18: (a) ¹H NMR spectrum, (b) ¹⁹F NMR and (c) ¹¹B NMR spectrum of compound **3** generated by addition of 100 equivalents of Fe^{3+} to compound **2a**.

Figure S19: The overlay of normalized absorption (solid line) and emission spectra (dotted line) of compound **2a** in CH₃CN.

Figure S20: (a) Absorption spectrum of compound **2a** in the presence of Fe^{3+} : (a) 0 to 1 equivalent The inset shows the plot of I/I_{max} vs. $[Fe^{3+}]$; (b) 1 to 100 equivalents. Emission spectra of compound **1** (10⁻⁵ M) in the presence of Fe^{3+} excited at 488 nm: (c) 0 to 1 equivalent (d) 1 to 100 equivalents in CH₃CN.

Figure S21: Emission spectra ($\lambda_{ex} = 560 \text{ nm}$) of compound 2a (10⁻⁵ M) upon titration with 0-1 equiv. of Fe³⁺ solution in CH₃CN. The inset shows the plot of I/I_{max} vs. [Fe³⁺]

Figure S22: Emission spectral changes of BODIPY **2a** (10 μ M) upon titration with 45 equivalents of Fe³⁺ ($\lambda_{ex} = 488$ nm) in CH₃CN. (Inset: Plot between the time and fluorescence intensity with 45 equivalents of Fe³⁺). Each spectrum was recorded after 1 min from addition of Fe³⁺.

Figure S23: Relative emission changes of compound **2a** (10⁻⁵ M) in the presence of Fe^{3+} excited at 488 nm: (c) 0 to 1 equivalent (d) 1 to 100 equivalents in CH₃CN.

Figure S24: The linear dynamic fluorescence response for the titration of BODIPY **2a** with Fe³⁺ ion to determine the limit of detection (LOD). The LOD was calculated using the formula $3\sigma/k$, where σ = standard deviation for 10 blank samples and k = slope of the linear calibration curve.

Figure S25: Absorption spectra of compound 2a (10 μ M) in an aqueous acetate buffer solution (0.1 M) as a function of the pH.

Parameters	2a
Mol. formula	$C_{28}H_{26}BF_2N_6O_8$
For. weight	623.36
Temp, K	150(2) K
cryst sym	Monoclinic,
space group	<i>C 2/c</i>
λ, Å	0.71073
<i>a</i> , Å	9.6447(9)
<i>b</i> , Å	23.900(3)
<i>c</i> , Å	27.692(3)
α, °	90.00
β, °	91.735(8)
γ, °	90.00
volume, Å ³	6380.3(12)
Ζ	8
μ (mm ⁻¹)	0.103
D _{calcd} (Mg m ⁻³)	1.298
F(000)	444
θ range (deg)	3.32 to 25.00
<i>e</i> data / unique	18398 / 5627
R _{int}	=0.0983
Data / restraints /	5627 / 0 / 409
parameters	
GOF on F^2	0.742
R1, wR2 [$I > 2\sigma(I)$]	0.0636, 0.1574
R1, wR2 (all data)	0.2179, 0.1861
Largest diff. peak/hole, (e Å ⁻³)	0.305 and -0.196

 Table S1: Crystal data for compound 2a