Supporting Information

to

In-situ Photo-Induced Chemical Doping of Solution-Processed Graphene Oxide for Electronic Applications

K. Savva¹, Y.-H. Lin², C. Petridis^{3,4}, E. Kymakis⁴, T. D. Anthopoulos^{2*}, E.

Stratakis^{1,6*}

¹ Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology-Hellas (FORTH), Heraklion, 71003, Greece

² Department of Physics & Centre for Plastic Electronics, Imperial College London, Blackett Laboratory, London SW7 2BW, United Kingdom

³ Department of Electronics, TEI of Crete, Chania 73132 Crete, Greece

⁴Center of Materials Technology and Photonics & Electrical Engineering Department, Technological Educational Institute (TEI) of Crete, Heraklion, 71003, Greece

⁵ Electrical Engineering Department, TEI of Crete, Heraklion, 71004, Crete, Greece

⁶Materials Science and Technology Department, University of Crete, Heraklion, 71003, Greece

Figure S1: FTIR spectra of GO sheets before (pristine) and after irradiation with 10 laser pulses in 50 Torr NH₃;

Figure S2: Dependence of the D and G bands positions on number of laser pulses, Np.

Figure S3: UPS spectra of GO films before (pristine) and after irradiation with 10 laser pulses in 50 Torr $Cl_2(a)$ and NH_3 (b).