Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2014

Supplementary Material (ESI) for Journal of Materials Chemistry This journal is (c) The Royal Society of Chemistry 2013

Electronic Supplementary Information

Conjugated Polymers with *m*-Pyridine Linkages: Synthesis, Photophysics, Solution Structure and Film Morphology

Ashley A. Buelt^{*a*}, Naresh C. Osti^{*a*}, Yamin Htet, ^a Catherine A. Conrad^{*b*}, Mina F. Shehata^{*b*}, Ruttayapon Potai^{*c*}, Andrew G. Tennyson*^{a,b,d,e} Dvora Perahia*^{*a*}, and Rhett C. Smith*^{*a,b,d*}

^a Department of Chemistry, Clemson University, Clemson, SC 29634.

^b Laboratory for Creative Inquiry in Chemistry, Clemson University, Clemson, SC 29634.

^c Laboratory of Advanced Polymers and Nanomaterials, Department of Chemistry and Center for Innovation in Chemistry, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand.

^{*d*} Center for Optical Materials Science and Engineering Technology, Clemson University, Anderson, SC 29634.

^e Department of Materials Science and Engineering, Clemson University, Clemson, SC 29634.

Email: rhett@clemson.edu

List of Supplementary Information Figures:

Figure S1. Proton NMR (300 MHz, CDCl₃) of NMe.
Figure S2. Carbon NMR (75 MHz, CDCl₃) of NMe.
Figure S3. Proton NMR (300 MHz, CDCl₃) of NdiBr.
Figure S4. Proton NMR (300 MHz, CDCl₃) of NBr.
Figure S5. Carbon NMR (75 MHz, CDCl₃) of NBr.
Figure S6. Proton NMR (300 MHz, CDCl₃) of NPhos.
Figure S7. Carbon NMR (75 MHz, CDCl₃) of NPhos.
Figure S8. Phosphorous NMR (121.47 MHz, CDCl₃) of NPhos.
Figure S9. Proton NMR (300 MHz, C₆D₆) of BHP.
Figure S10. Proton NMR (300 MHz, CDCl₃) of CP.
Figure S11. Infrared Spectrum of BHP.
Figure S13. UV-vis Absorption spectra for CP and BHP.

Figure S1. Proton NMR (300 MHz, CDCl₃) of NMe (the structure is shown as an inset).

Figure S2. Carbon NMR (75 MHz, CDCl₃) of NMe.

Figure S3. Proton NMR (300 MHz, CDCl₃) of NdiBr (the structure is shown as an inset).

•

Figure S4. Proton NMR (300 MHz, CDCl₃) of NBr (the structure is shown as an inset).

Figure S5. Carbon NMR (75 MHz, CDCl₃) of NBr.

Figure S6. Proton NMR (300 MHz, CDCl₃) of NPhos (the structure is shown as an inset).

Figure S7. Carbon NMR (75 MHz, CDCl₃) of NPhos.

Figure S8. Phosphorous NMR (121.47 MHz, CDCl₃) of NPhos.

Figure S9. Proton NMR (300 MHz, C₆D₆) of BHP (the structure is shown as an inset).

Figure S10. Proton NMR (300 MHz, CDCl₃) of CP (the structure is shown as an inset).

Figure S11. Infrared Spectrum of BHP.

Figure S12. Infrared Spectrum of CP.

Figure S13. UV-vis Absorption spectra for CP and BHP.