Supplementary Information

Tailored design of Co_xMn_{1-x}Fe₂O₄ nanoferrites: a new route for dual control of size and magnetic properties

Carlos Fernandes, Clara Pereira, María Paz Fernández-García, André M. Pereira, Alexandra Guedes, Rodrigo Fernández-Pacheco, Alfonso Ibarra, M. Ricardo Ibarra, João P. Araújo, and Cristina Freire

	A _{1g} (1)		A _{1g} (2)		T _{2g} (1)		T _{2g} (2)		T _{2g} (3)		Eg		P1 ^b	
Material	Ū	Area	$\bar{\upsilon}$	Aroo	Ū	Area	Ū	Area	Ū	Area	Ū	Aroo	Ū (cm ⁻¹) ^a	Area
	(cm ⁻¹) ^a		(cm ⁻¹) ^a	Alta	(cm ⁻¹) ^a		(cm ⁻¹) ^a		(cm ⁻¹) ^a		(cm ⁻¹) ^a	Alta		
Mn_M	679	543	614	824	540	493	449	201	163	27	287	72	336	122
Co _{0.3} Mn _{0.7} _M	663	540	603	628	540	165	460	534	166	12	278	65	339	135
Co _{0.7} Mn _{0.3} _M	672	410	605	558	540	280	463	780	167	15	278	36	328	72
Co_M	679	743	609	616	545	299	471	857	177	70	289	286	370	42
Mn_Na	680	584	624	697	565	1121	453	230	168	14	292	78	348	192
Co _{0.3} Mn _{0.7} _Na	648	253	597	810	542	259	453	399	167	17	284	119	341	38
Co _{0.7} Mn _{0.3} _Na	659	261	594	561	543	187	456	679	176	13	286	114	347	16
Co_Na	675	527	614	535	539	403	463	848	173	25	293	104	371	4

Table S1. Raman band parameters obtained by curve fitting of the Raman spectra and corresponding assignment

^{*a*} Raman band position. ^{*b*} Additional non-indexed Raman mode.

Table S2. Saturation magnetization values obtained by Langevin analysis of theexperimental M(H) curves

Sampla	M _S ^{Lan} (emu g⁻¹)				
Sample					
Mn_M	55.0				
Co _{0.3} Mn _{0.7} _M	60.7				
Co _{0.7} Mn _{0.3} _M	52.5				
Co_M	53.0				

Figure S2. Powder XRD diffractograms of the $Co_xMn_{1-x}Fe_2O_4$ samples synthesized with MIPA (top) and NaOH (bottom), at room temperature.

Figure S3. Plots of $\beta \cos \theta / K\lambda$ versus $4 \sin \theta / K\lambda$ plot of the Co_xMn_{1-x}Fe₂O₄ samples

synthesized with (A) MIPA and (B) NaOH.

Figure S4. Deconvoluted Raman spectra of the $Co_xMn_{1-x}Fe_2O_4$ samples synthesized with MIPA, at room temperature: (a) Mn_M, (b) $Co_{0.3}Mn_{0.7}M$, (c) $Co_{0.7}Mn_{0.3}M$ and (d) Co_M .

Figure S5. FTIR spectra of Co_xMn_{1-x}Fe₂O₄ nanoparticles prepared with (A) MIPA and (C) NaOH. (B), (D) Magnified FTIR spectra in the 2000–400 cm⁻¹ range.

Figure S6. M(H) curves measured at 5 K for Co_{0.3}Mn_{0.7}Na and Co_{0.7}Mn_{0.3}Na samples. The arrows are pointing the kinks detected at low values of magnetic field (see text).

