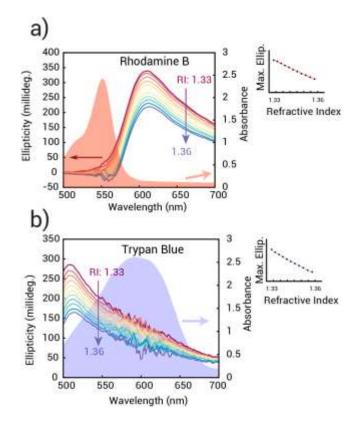
Supporting Information for:

Evaluation of form birefringence in chiral nematic mesoporous materials

Joel A. Kelly[†], C. P. Kyle Manchee,[§] Susan Cheng,[†] Jun Myun Ahn,[†] Kevin E. Shopsowitz,[†] Wadood Y. Hamad[‡], and Mark J. MacLachlan^{†*}

† Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, Canada V6T 1Z1


§ Department of Physics, University of Toronto, 60 St. George St., Toronto, Ontario, Canada M5S 1A7

‡ FPInnovations, Inc., 3800 Wesbrook Mall, Vancouver, British Columbia, Canada V6S 2L9

* Corresponding author: mmaclach@chem.ubc.ca

Figure S1: a) Calculated CD spectra for a chiral nematic mesoporous organosilica film based on the form birefringence model. b) Calculated response of the maximum intensity and wavelength as a function of the solution refractive index.

Figure S2: Refractometric sensing performance of chiral nematic mesoporous organosilica in opaque solutions spiked with Rhodamine B (a, absorption spectra shaded orange) and Trypan Blue (b, absorption spectra shaded blue). When the absorbance is greater than 2 (*i.e.*, 99% of the light absorbed by the dye), the signal/noise ratio of the circular dichroism feature decreases, but the wide breadth of the chiral nematic band ensures that the refractometric performance is retained.