Electronic Supplementary Information:

Selective n-Type Doping in Graphene via the Aluminium Nanoparticle Decoration Approach

Xiaoling Shi, ‡^{*a*} Guofa Dong, ‡^{*ab*} Ming Fang, ‡^{*ab*} Fengyun Wang, ^{*c*} Hao Lin, ^{*ab*} Wen-Chun Yen, ^{*d*} Kwok Sum Chan, ^{*ab*} Yu-Lun Chueh ^{*d*} and Johnny C. Ho^{*ab**}

^a Department of Physics and Materials Science, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Kowloon, Hong Kong; E-mail: johnnyho@cityu.edu.hk ^b Shenzhen Research Institute, City University of Hong Kong, Shenzhen, People's Republic of China ^c Cultivation Base for State Key Laboratory, Qingdao University, No. 308 Ningxia Road, Qingdao,

People's Republic of China

^d Department of Materials Science and Engineering, National Tsing Hua University, No. 101 Sec. 2 Kuang-Fu Road, Hsinchu, 30013, Taiwan

‡ These authors contributed equally to this work.

E-mail: johnnyho@cityu.edu.hk

Figure S1. (a) Schematic illustration and (b) SEM image of Al decorated graphene FET.

Figure S2. Size distribution of discrete Al nanoparticles deposited with different decoration thickness: (a) 0.5 nm, (b) 1.0 nm and (c) 1.5 nm.

Calculation of charge carrier density:

- The charge carrier density of graphene FETs can be calculated by the formula:

$$n = \frac{CV_D}{eS} = \frac{\varepsilon_0 \varepsilon_r V_D}{eD}$$

where *C* is the capacitance of the gate in the FET, V_D is the shift of the Dirac point relative to that of the pristine graphene, *S* is the surface area, *e* is the electron charge, ε_0 is the value of the absolute dielectric permittivity of classical vacuum, ε_r is the dielectric constant of SiO₂, and *D* is the SiO₂ layer thickness.

- For devices without the Al decoration, the Dirac point is located at a value larger than 40 V at the positive side (Figure 3b and d), corresponding to the hole concentration of ~ 2.84×10^{12} cm⁻². After the Al decoration and Al₂O₃ passivation, the hole concentration is decreased to ~ 1.78×10^{12} cm⁻² (Dirac point at ~20 V; Figure 3a) and ~ 0.87×10^{12} cm⁻² (Dirac point at ~10 V; Figure 3c) for devices with the 3 µm and 5 µm channel width, respectively. Importantly, the n-type conduction is evidently observed in the transfer curves (Figure 3), indicating the n-doping effect here in reducing the hole concentration.

Figure S3. Transfer characteristics of nine different Al (1.0 nm thick) decorated graphene FETs. All devices are fabricated with the 3 μ m channel width and the 30 nm thick Al₂O₃ capping layer. After the decoration, the Dirac point is shifted to ~26 ± 5 V for these devices.

Figure S4. Transfer characteristics of nine different Al (1.0 nm thick) decorated graphene FETs. All devices are fabricated with the 5 μ m channel width and the 30 nm thick Al₂O₃ capping layer. After the decoration, the Dirac point is shifted to ~13 ± 2 V for these devices.

Figure S5. Transfer characteristic of the control device with only 1 nm thick Al and 30 nm Al_2O_3 passivation layer (without the active graphene channel layer).

Figure S6. Transfer characteristic of the typical Sn decorated graphene FET. The Dirac point of the graphene device is shifted to +20 V with the Sn decoration.