Electronic Supplementary Information for the manuscript submitted to Journal of Materials Chemistry C

Colloidal solutions of niobium trisulfide and niobium triselenide

Vladimir E. Fedorov,*^{*a, b*} Sofya B. Artemkina,^{*a,b*} Ekaterina D. Grayfer,^{*a*} Nikolay G. Naumov,^{*a,b*} Yuri V. Mironov,^{*a*} Alexander I. Bulavchenko,^{*a*} Vladimir I. Zaikovskii,^{*b*} Irina V. Antonova,^{*c*} Alexander I. Komonov,^{*c*} and Maxim V. Medvedev^{*d*}

 ^aNikolaev Institute of Inorganic Chemistry, Siberian Branch of Russian Academy of Sciences, 3, Acad. Lavrentiev prospect, Novosibirsk, 630090, Russian Federation
^bNovosibirsk State University, 2, Pirogova street, Novosibirsk, 630090, Russian Federation
^cRzhanov Institute of Semiconductor Physics, Siberian Branch of Russian Academy of Sciences, 13, Acad. Lavrentiev prospect, Novosibirsk, 630090, Russian Federation
^dSamsung Advanced Institute of Technology, Suwon, South Korea

*Corresponding author. Tel. +7383-330-92-53; E-mail: fed@niic.nsc.ru

1. Experimental details

The syntheses of niobium trichalcogenides were carried out using high temperature ampoule method starting from high purity elements. Before synthesis the silica ampoule V=16 mL was thoroughly cleaned, dried, heated in vacuum at 800°C to remove traces of absorbed H_2O and O_2 and cooled under vacuum.

Synthesis of NbS₃

The stoichiometric mixture of niobium powder (2.500 g, 0.0269 mol) and sulphur (2.590 g, 0.0809 mol) was loaded into ampoule which was evacuated to 10^{-5} bar and sealed under dynamic vacuum. The ampoule was heated in electrical furnace as follows: heating to 600°C during 12 h, keeping at 600°C during 120 h, and cooling to room temperature for 5 h. Then the ampoule was cut and the resulting powder was taken out and put under Ar. Yield of NbS₃ is quantitative. Powder pattern of NbS₃ fits well that calculated for triclinic NbS₃ (PDF Number: 71-468, triclinic, Sp. Gr. P-1).

Synthesis of NbSe₃

The stoichiometric mixture of niobium powder (3.000 g, 0.0323 mol) and selenium powder (7.650 g, 0.0969 mol) were placed in a quartz vacuum-degassed ampoule and sealed. The ampoule with reaction mixture was heated in a furnace during 6 h to the temperature of 600°C and then kept at this temperature for 74 h. After that the furnace was cooled down to room temperature during 14 h and opened. Yield of NbSe₃ is quantitative. XRD powder pattern of the synthesized NbSe₃ corresponds to the pattern calculated for monoclinic NbSe₃.

2. Uv-vis characterization of dispersions

Figure S1. Correlation dependence between the concentration of NbS₃ / CH₃CN dispersion and the value of absorption band at 589 nm.

3. DLS characterization of dispersions

Figure S2. Monomodal DLS analysis of the hydrodynamic diameters distributions for NbS₃ colloidal dispersions in 45% EtOH water solution (left); in isopropanol (right).

Figure S3. Monomodal DLS analysis of the hydrodynamic diameters distributions for NbSe₃ colloidal dispersion in various solvents

4. SEM characterization of NbS₃ samples filtered through Anodisc membrane from its colloids

Figure S4. SEM images of NbS₃ nanoparticles filtered from its colloid through Anodisc membrane.

5. AFM characterization of NbS3 and NbSe3 samples deposited from acetonitrile dispersion

Figure S5. AFM image of NbSe₃ deposited from acetonitrile colloid solution.

Figure S6. AFM images of small particles of NbS₃ in the sample and its profiles.

6. TEM characterization of NbS_3 samples deposited from acetonitrile dispersion

Figure S7. TEM images of NbS₃ high-crystalline NbS₃ particle (a, b); edges of NbS₃ particles (c, d); Figure c shows thin amorphous shell on the surface; NbS₃ layer packing (e).

7. Optical images of thin films of NbS3 prepared by filtration and spray method

Figure S8. Photograph of NbS₃ films filtered on Whatman anodisc (diameter is 25 mm, pores are 0.02 μm)

Figure S9. NbS₃ film preparation by spray-method: in process of spraying (left); the resulting NbS₃ film (right).

8. XRD characterization of NbS₃ films

Figure S10. Simulation of textured X-Ray diffraction patterns for NbS₃ films with variation of empirical coefficient O_1 .

9. IR spectroscopy data

Figure S11. IR-spectrum of dispersed NbS₃ solid. The band at 568 cm⁻¹ corresponds to S–S bonds, and the band at 400 cm⁻¹ to Nb–S bonds.