Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2014

Supplementary Information for:

Multiferroism in hexagonally stabilized TmFeO₃ thin films below 120 K

Suk-Jin Ahn,^{ad} Jung-Hoon Lee,^a Hyun Myung Jang^{ab*} and Young Kyu Jeong^{cd*}

^{*a*} Department of Materials Science and Engineering, Division of Advanced Materials Science, Pohang Universit y of Science and Technology (POSTECH), Pohang 790-784, Republic of Korea

^b Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang 790-784, Republi c of Korea

^c Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
^d Memory Manufacturing Operation Center, Samsung Electronics Co., Ltd., Hwaseongsi 449-711, Republic of Korea

* To whom correspondence should be addressed: Hyun Myung Jang: <u>hmjang@postech.ac.kr</u> and Young Kyu Je ong: <u>young.jeong@northwestern.edu</u>

Methods

Film Fabrication and Characterizations.

An epitaxial Pt (111) film as the bottom-electrode layer was grown on the Al₂O₃ (0001) subs trate using RF magnetron sputtering. A pulsed laser deposition method was then used for the fabrication of a 60-nm-thick hexagonal TmFeO₃ (h-TFO) film layer on the Pt(111)/sapphire (Al_2O_3) substrate at a laser energy density of ~1.5 *J/cm*² with the repetition rate of 3 *Hz*. The s ubstrate temperature was held at 850 °C in an oxygen ambience of 200 mtorr. After the PLD growth, a Pt top-electrode layer was deposited to make a capacitor structure.

The temperature-dependent spontaneous polarization was evaluated by measuring the pyrocu rrent using a Keithley 487 picoammeter with a sweeping rate of 2 °C /min. Starting at 100 °C, the film was cooled down under an electric poling field of 800 kV/cm along the *c*-axis before measuring the pyroelectric current on heating. *P-E* hysteresis loops with a virtual ground mod e were obtained using a Precision LC system (Radiant Technologies, Inc.). Magnetic properti es were examined by measuring M-H (SQUID magnetometer, Quantum Design) and M(T) cu rves (MPMS).

First Principles Calculations

We performed *ab initio* DFT calculations on the basis of the generalized gradient approximation (GGA) and the GGA + U method implemented with the projector augmented wave (PAW)^{S1,S2} pseudopotential using the Vienna *ab initio* Simulation Package (VASP).^{S3,S4} We adopted (i) a 5×5×3 Monkhorst-Pack *k*-point mesh centered at Γ ,^{S5} (ii) a 500eV planewave cutoff energy, and (iii) the tetrahedron method with the Blöchl corrections for the Brillouin zone integrations.^{S6} The Hubbard U_{eff} of 4.5 eV for Fe was chosen on the basis of previous studies.^{S7} We explicitly treated 9 valence electrons for Tm (5*p*⁶5*d*¹6*s*²), 8 for Fe (3*d*⁶4*s*²), and 6 for O (2*s*²2*p*⁴). All structural relaxation was performed with a Gaussian broadening of 0.05 eV.^{S7} The ferroelectric polarization was calculated using the Berry-phase method.^{S8}

	P6 ₃ cm			P6 ₃ /mmc		
	X	у	Z	X	У	Z
Tm1	0	0	0.2766	0	0	0.2500
Tm2	0.3333	0.6667	0.2328	0.3333	0.6667	0.2500
Fe	0.3337	0	0	0.3333	0	0
01	0.3056	0	0.1664	0.3333	0	0.1667
02	0.6394	0	0.3370	0.6667	0	0.3333
03	0	0	0.4770	0	0	0.5000
04	0.3333	0.6667	0.0209	0.3333	0.6667	0.0000

Optimized atomic positions in hexagonal TmFeO₃

Table S1. In our density-functional theory (DFT) calculations, the following ground-state lattice parameters at zero pressure were obtained: the hexagonal unit-cell parameters of a = 6.0057 Å and c = 11.6867 Å for $P6_3cm$ phase. Using these parameters, we also computed $P6_3/mmc$ phase.

Computed double-well potential

Figure S1. According to the computed double-well potential, the barrier height for the dipole switching along the *c* axis is 0.1198 eV per unit cell. This clearly demonstrates the thermodynamic stability of the ferroelectric P6₃cm phase over the centrosymmetric P6₃/mmc phase. The total Kohn-Sham (KS) energy calculations indicate that the ferroelectric P6₃cm phase is substantially more stable than these phases. According to our density-functional theory (DFT) calculations, the equilibrium off-center displacement of the Tm ion along the c axis is antiparallel to that of the O_A ion but with the same displacement of 0.290Å. This indicates that the net off-centering distortion is 0.580Å.

Local distances between Tm and O ions

Figure S2. The h-TFO compound possesses two distinct Tm-ion sites in the ferroelectric state. The first dipole (O_A -Tm1- O_A) is antiparallel to the second one (O_A -Tm2- O_A). In addition, the amplitude of the local Tm1 off-centering is larger than that of the local Tm2 off-centering. Thus, the net polarization is parallel to the *c* axis of P6₃cm.

Capacitance – Voltage Curves

Figure S3. Capacitance-voltage curve of the Pt/h-TFO/Pt capacitor obtained at 100 kHz with the probing electric field parallel to the film-grown direction, [0001]. The ferroelectricity with a non-zero remnant polarization was also confirmed by obtaining a butterfly-shaped hysteresis C-V curve.

Pyroelectric Current Data

Figure S4. Temperature-dependent pyroelectric current of the h-TFO film obtained using a Keithley 487 picoammeter with a sweeping rate of 2° C/min. The onset of the para-to-ferroelectric transition is observed at ~430 K (Tc, Curie temperature), as described in the main manuscript.

Temperature dependent relative dielectric permittivity curves

Figure S5. Temperature dependent relative dielectric permittivity curves of the h-TFO film measured at various ac probing frequencies. Note that the peak temperature of the dielectric permittivity coincides well with the onset of the ferroelectric transition at ~430 K.

* References

- (S1) P. E. Blöchl, Phys. Rev. B, 1994, 50, 17953.
- (S2) G. Kresse, D. Joubert, Phys. Rev. B, 1999, 59, 1758.
- (S3) G. Kresse, J. Hafner, Phys. Rev. B, 1993, 47, 558.
- (S4) G. Kresse, J. Furthmüller, Phys. Rev. B, 1996, 54, 11169.
- (S5) H. J. Monkhorst, J. D. Pack, Phys. Rev. B, 1976, 13, 5188.
- (S6) P. E. Blöchl, O. Jepsen, O. K. Andersen, Phys. Rev. B, 1994, 49, 16223.
- (S7) Y. K. Jeong, J.-H. Lee, S.-J. Ahn, S.-W. Song, H. M. Jang, H. Choi, J. F. Scott, J. Am. Chem. Soc. 2012, **134**, 1450.

(S8) R. D. King-Smith, D. Vanderbilt, *Phys. Rev. B*, 1993, **47**, 1651; D. Vanderbilt, R. D. King-Smith, *ibid* 1993, **48**, 4442.