Supplementary Information

Facile Tuning of the Aggregation Induced Emission Wavelength in a Common Framework of a Cyclometalated Iridium(III) Complex : Micellar Encapsulated Probe in Celluler Imaging

Parvej Alam^a, Pradip Das^b, Clàudia Climent^c, Maheswararao Karanam^d, Pere Alemany^{c*}, Angshuman Roy Choudhury^{d*}, Nikhil R. Jana^{b*}, Inamur Rahaman Laskar^{a*}

^aDepartment of Chemistry, Birla Institute of Technology and Science, Pilani Campus, Pilani, Rajasthan, India, <u>ir_laskar@bits-pilani.ac.in</u>; ^bCentre For Advanced Materials, Indian Association for the Cultivation of Science, Kolkata-32, India, <u>camnrj@iacs.res.in</u>; ^cDepartament de Química Física and Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona. Martí i Franquès 1-11, 08028 Barcelona, Spain, Email: <u>p.alemany@ub.edu</u>; ^dDepartment of Chemical Sciences, Indian Institute of Science Education and Research (IISER), Mohali, Sector 81, S. A. S. Nagar, Manauli PO, Mohali, Punjab, 140306, India, <u>angshurc@iisermohali.ac.in</u>

c

•••

Fig. S1. IR and (¹H,¹³C,³¹P) NMR spectra are shown in a, b, c, d, respectively for the intermediate, A(i).

Fig. S2. IR and (¹H,¹³C,³¹P) NMR spectra are shown in a, b, c, d, respectively for the intermediate, A(j).

Fig. S3. IR and $({}^{1}\text{H}, {}^{13}\text{C}, {}^{31}\text{P})$ NMR spectra are shown in a, b, c, d, respectively for the intermediate, A(k).

а

Fig. S4. IR and $({}^{1}H, {}^{13}C, {}^{31}P)$ NMR spectra are shown in a, b, c, d, respectively for the intermediate, A(l).

b

с

d

Fig. 58. (¹H, ¹³C, ³¹P) NMR spectra are shown in a, b, c and HRMS data in d respectively for 1

b

Fig. 68. (¹H, ¹³C, ³¹P) NMR spectra are shown in a, b, c and HRMS data in d respectively for 2

d

а

Fig.S7. (¹H, ¹³C, ³¹P) NMR spectra are shown in a, b, c and HRMS data in d respectively for **3**.

a

Fig. S8. (¹H,¹³C,³¹P) NMR spectra are shown in a, b, c and HRMS data in d respectively for 4.

Fig. S9. (¹H,¹³C,³¹P) NMR spectra are shown in a, b, c and HRMS data in d respectively for 5.

d

b

d

Fig. S10. (¹H, ¹³C, ³¹P) NMR spectra are shown in a, b, c and HRMS data in d respectively for 6.

Fig. S11. (¹H, ¹³C, ³¹P) NMR spectra are shown in a, b, c and HRMS in d respectively for 7.

b

Fig. S12. (¹H, ¹³C, ³¹P) NMR spectra are shown in a, b, c and HRMS data in d respectively for 8.

b

Fig. S13. (¹H, ¹³C, ³¹P) NMR spectra are shown in a, b, c and HRMS data in d respectively for 9.

а

Fig. S14. (¹H, ¹³C, ³¹P) NMR spectra are shown in a, b, c and HRMS data in d respectively for 10.

D

Fig. S15. (¹H, ¹³C, ³¹P) NMR spectra are shown in a, b, c and HRMS data in d respectively for **11**.

Fig. S16. (¹H, ¹³C, ³¹P) NMR spectra are shown in a, b, c and HRMS data in d respectively for **12.**

Fig. S17. Geometry comparison between the x-ray crystal (green), and the ground state (blue) and lowest triplet (red) optimized geometries in DMC solution of complexes **2**, **8** and **9**.

Fig. S18. Solution UV-Vis absorbance spectra (10⁻⁵M, DCM) of the complexes, **1-8** [short range spectrum are showed in inset (260 - 450 nm)]

Fig. S19 (a,b) The normalized PL spectra of complex 1-12 in 10⁻⁴ M DCM.

Fig. S20. The PL spectra of complexes 2, 9 and 10 in different solvents with the concentration $1 \times 10^{-4} \text{ mol.L}^{-1}$.

Fig. S21. Solid state PL spectrum for 1-8, showing the tuning of emission wavelengths

Fig. S22. (a) change in PL intensity of complexes 1, 3, 4, 5, 7 and 8 with changing the water fraction (b) change in PL intensity of complexes 1, 3, 4, 5, 7 and 8 with changing the PEG fraction.

Fig. S23. Photoluminescence life-time decay curves in 0, 30, 60 and 90% water fractions in THF for the complex **6** (0% water was fitted bi exponentially and 30, 60 and 90% were fitted tri expoenentially; red is the fitting curve).

Fig. S24. Absorption, excitation and photoluminescence property of (a) iridium complex in THF (b) aggregated iridium complex in water (c) iridium complex **6** encapsulated PEG-PLA nanoparticles.

Fig.S25. DLS histogram of PEG-PLA nanoparticles in water.

Fig. S26. FTIR spectra of (a) iridium complex 6, (b) PEG-PLA nanoparticles and (c) iridium complex 6 encapsulated PEG-PLA nanoparticles.

Fig. S27. SEM image of iridium complex **6** encapsulated PEG-PLA particles (a) and the corresponding elemental mapping image of iridium (b).

Fig. S28. Luminescent lifetime decay curve of (a) iridium complex in THF (b) aggregated iridium complex in water and (c) iridium complex encapsulated PEG-PLA nanoparticles. Black and red lines correspond to experimental and fitted data respectively.

Fig. S29. Bright field (BF) and luminescence(L)image under UV light exposure of the films of iridium complex. Top row represents aggregated iridium complex in water and bottom row represents for iridium complex encapsulated PEG-PLA nanoparticles.

Fig. S30. A series of images of particle labeled HeLa cells using at different Z planes from top to bottom with consecutive Z-axis slices of $3.42 \ \mu m$ each, demonstrating that the particles are located both in cytoplasm and at cell surface.

Fig. S31. Bright field (BF) and luminescence (L) image of HeLa cells after incubated with aggregated iridium complex in water for 4 hours.

Fig. S32. The digital images of iridium complex **6** encapsulated PEG-PLA particles in cell culture medium without any significant precipitation till 7 days. Particles are mixed with Dulbecco's modifed eagle medium (DMEM) with 10 % fetal bovine serum (FBS) and images are taken after one hour, one day and 7 days. Top and bottom row shows the images of solution under ordinary light and UV light.

Reaction Time (h)				
Complex	Intermediate	product	Yield (%)	
1	7.0	12	44 ^a ,33 ^b (off white solid)	
2	5	3	70 ^a ,56 ^b (green solid)	
3	5	3	53 ^a (green solid)	
4	6.3	12	31 ^a (green solid)	
5	7.0	3	38 ^a (green solid)	
6	4	3	65 ^a ,56 ^b (green solid)	
7	4	3	45 ^a (green solid)	
8	6.3	12	36 ^a (green solid)	
9	4.0	3	60 ^a ,46 ^b (green solid)	
10	4.0	3	50 ^a (yellow solid)	
11	4.0	3	55 ^a ,40 ^b (yellow solid)	
12	4.0	3	31 ^a ,20 ^b (brown solid)	

Table S1. The time required to produce the intermediates A (i,j,k,l), the complexes (1-12) and the yields of the complexes (1-12).

 $^a\mbox{with}\ Na_2CO_3$ and $^b\mbox{without}\ Na_2CO_3$

	2	9	8
Empirical formula	C47H36ClF2IrNP2	C49H39ClIrNP2	IrC27H30C1NP2
Formula weight	942.38	931.4	857.07
Temperature (K)	100.00	296.15	100.00
Crystal system	Orthorhombic	triclinic	orthorhombic
Space group	Pna21	P-1	P212121
Unit cell dimensions	a = 32.2085(4) Å	a = 10.1170(3) Å	a = 9.6548(4) Å; $b =$
	b = 12.2682(1) Å	b = 12.0586(4) Å	15.9271(7)A; c = 17.1527(7)Å
	c = 9.6830(1) Å	c = 16.2142(5) Å	$\alpha = \beta = \gamma = 90^{\circ}$
	$\alpha = \beta = \gamma = 90^{\circ}$	$\alpha = 100.1390(10)$	
		$\beta = 95.3490(10)$	
		$\gamma = 94.1500(10)$	
Volume (Å3)	3826.14	1930.74(10)	2637.62(19)
Ζ	4	2	4
Density (Mg/m3)	1.636	1.602	2.158
Absorption coefficient (mm-1)	3.692	3.647	5.330
F(000)	1868	928.0	1632
Crystal size (mm3)	$0.2 \times 0.2 \times 0.1$	0.2 imes 0.1 imes 0.1	$0.2 \times 0.2 \times 0.15$
Theta range for data collection (°)	2.45 to 37.03	2.56 to 60.06	3.48 to 60.12
Index ranges	$\begin{array}{l} 0 \leq h \leq 54; \ 0 \leq k \leq 20; \\ 0 \leq l \leq 16 \end{array}$	$\begin{array}{l} -13 \leq h \leq 14, -16 \leq k \\ \leq 16, -22 \leq l \leq 22 \end{array}$	$\begin{array}{c} -12 \leq h \leq 13, -22 \leq k \\ \leq 21, -24 \leq l \leq 24 \end{array}$

Table S2. Crystal data and structure refinement for 2, 8 and 9.

Reflections collected	10162	33437	24769
Independent	9908 [R(int) = 2.23%]	11275 [R(int) =	7654 [R(int) =
reflections		0.0176]	0.0301]
Data / restraints / parameters	10162/1/487	11275/0/491	7654/0/293
Goodness-of-fit on F2	1.062	1.062	0.962
Final R indices	R1 = 0.0223, wR2 =	R1 = 0.0163, wR2 =	R1 = 0.0260, wR2 =
[I>2sigma(I)]	0.0617	0.0382	0.0619
R indices (all data)	R1=0.0233, wR2 =	R1 = 0.0177, wR2 =	R1 = 0.0307, wR2 =
	0.0622	0.0395	0.0711
Largest diff. peak and	1.932, -2567	1.44, -0.75	1.961, -0.933
hole (e.Å-3)			

Table S3. Selected Bond lengths [Å] and angles [°] for **2**, **8** and **9**.

Bond distances	2	9	8
(Å)			
Ir1- C19	1.998(3)	2.0211(15)	(Ir-C27)
			2.009(4)
Ir1- N1	2.160(2)	2.1529(13)	2.142(3)
Ir1 - P1	2.3199(6)	2.3251(4)	2.3069(1
			2)
Ir1-P2	2.3278(6)	2.3229(4)	2.2931(1
			2)
Ir1-Cl1	2.4641(7)	2.4748(4)	2.5037(1
			0)

Bond angles (°)	2	9	8
C19 Ir1 N1	78.99(10)	80.20(6)	C27Ir1N1,
-------------	-----------	-------------	-------------
		80.30(6)	79.47(15)
C19 Ir1 P1	91.25(8)	85.80(4)	90.43(12)
N1 Ir1 P1	95.37(6)	92.90(4)	95.91(10)
C19 Ir1 P2	95.38(8)	88.57(4)	C27 Ir1 P2,
			90.53(12)
N1 Ir1 P2	91.68(6)	94.62(4)	94.91(10)
P1 Ir1 P2	171.13(2)	169.718(13)	169.13(4)
C19 Ir1 Cl1	176.97(8)	170.64(5)	171.83(13)
N1 Ir1 Cl1	98.14(7)	90.82(4)	C27Ir1Cl1,
			92.36(10)
P1 Ir1 Cl1	88.04(2)	97.684(13)	90.67(4)
P2 Ir1 Cl1	85.63(2)	89.211(14)	89.92(4)

Table S4. Selected bond lengths and angles for the ground state optimizedgeometries in dichloromethane (ε =8.93) of complexes **2**, **6** and **8-12** at the B97-D/6-31+G(d)/LANL2DZ with IEF-PCM computational level.

	Bo		Angles (°)					
Complex	Ir-N	Ir-C	Ir-Cl	Ir-H	Ir-P	N-Ir-C	Cl-Ir-H	P-Ir-P
2	2.193	2.007	2.593	1.600	2.345	79.1	91.5	171.1
6	2.201	2.014	2.612	1.601	2.339	79.1	92.4	171.3
8	2.189	2.013	2.618	1.611	2.325	79.1	90.9	175.1
9	2.220	2.018	2.604	1.597	2.340	79.9	92.4	172.5
10	2.050	2.106	2.484	1.673	2.339	80.0	91.7	170.5
11	2.047	2.111	2.485	1.670	2.340	80.0	91.3	171.4
12	2.043	2.101	2.490	1.672	2.340	79.1	91.1	170.2

			Angles (°)					
Complex	Ir-N	Ir-C	Ir-Cl	Ir-H	Ir-P	N-Ir-C	Cl-Ir-H	P-Ir-P
2	2.174	1.985	2.555	1.604	2.366	80.8	90.7	172.6
6	2.188	1.980	2.576	1.603	2.363	81.1	91.7	172.9
8	2.181	1.978	2.590	1.613	2.348	81.2	90.9	176.3
9	2.224	1.981	2.573	1.598	2.354	79.7	91.6	173.1
10	2.048	2.081	2.495	1.675	2.342	79.9	91.6	170.3
12	2.065	2.093	2.456	1.665	2.352	79.2	95.3	172.2

Table S5. Selected bond lengths and angles for the lowest triplet state optimized geometries in dichloromethane (ϵ =8.93) of complexes 2, 6 and 8-12 at the B97-D/6-31+G(d)/LANL2DZ with IEF-PCM computational level.

Table S6. Comparison between experimental absorption maxima (λ_{exp}) and extinction coefficients to the computed transition energies (λ_{cals}) and oscillator strengths for complexes 2, 6, 8, 9, 10 and 12 in DCM solution. Computed values obtained at the B3LYP/6-31+G(d)/LANL2DZ level (IEF-PCM).

Complex	λ_{exp}/nm	3	State	λ_{cals}/nm	strength	Composition
2	430	0.05	T_1	433	-	HOMO \rightarrow LUMO (56%) HOMO-3 \rightarrow LUMO (25%)
	-	-	T_2	367	-	HOMO-3 \rightarrow LUMO (42%) HOMO \rightarrow LUMO (36%)
	369	1.5	S_1	360	0.05	HOMO \rightarrow LUMO (97%)
	338	2.3	S ₅	310	0.04	HOMO-2 \rightarrow LUMO (66%) HOMO \rightarrow LUMO+1 (20%) HOMO-3 \rightarrow LUMO (11%)
6	445	0.025	T_1	451	-	HOMO \rightarrow LUMO (68%) HOMO-3 \rightarrow LUMO (19%)
	-	-	T_2	381	-	HOMO-3 \rightarrow LUMO (50%) HOMO \rightarrow LUMO (26%)

	381	0.51	\mathbf{S}_1	372	0.07	HOMO \rightarrow LUMO (97%)
	343	0.65	S_5	312	0.03	HOMO-2 \rightarrow LUMO (89%)
8	430	0.02	T_1	445	-	HOMO \rightarrow LUMO (68%) HOMO-3 \rightarrow LUMO (21%)
	-	-	T ₂	376	-	HOMO-3 \rightarrow LUMO (51%) HOMO \rightarrow LUMO (27%)
	384	2.7	\mathbf{S}_1	368	0.06	HOMO \rightarrow LUMO (97%)
	349	3.6	S_4	317	0.02	HOMO \rightarrow LUMO+1 (80%) HOMO-2 \rightarrow LUMO (16%)
9	-	-	T_1	494	-	HOMO \rightarrow LUMO (47%) HOMO \rightarrow LUMO+1 (19%) HOMO-2 \rightarrow LUMO (13%)
	451	0.04	T ₂	442	-	HOMO \rightarrow LUMO (45%) HOMO \rightarrow LUMO+1 (37%)
	407	0.71	\mathbf{S}_1	400	0.06	HOMO \rightarrow LUMO (94%)
10	-	-	T_1	553	-	HOMO \rightarrow LUMO (63%) HOMO-2 \rightarrow LUMO (16%)
	-	-	T ₂	444	-	HOMO-2 \rightarrow LUMO (62%) HOMO \rightarrow LUMO (24%)
	424	0.59	\mathbf{S}_1	418	0.02	HOMO \rightarrow LUMO (94%)
	336	5.1	S_3	356	0.21	HOMO-2 \rightarrow LUMO (86%)
	319	5.5	S_8	328	0.11	HOMO-3 \rightarrow LUMO (87%)
11	-	-	T ₁	465	-	HOMO \rightarrow LUMO (28%) HOMO-2 \rightarrow LUMO (17%) HOMO-3 \rightarrow LUMO+1 (10%) HOMO \rightarrow LUMO+3 (10%)
	-	-	T ₂	442	-	HOMO \rightarrow LUMO (58%) HOMO \rightarrow LUMO+1(13%) HOMO-2 \rightarrow LUMO (13%)

	400	0.27	S_2	393	0.04	HOMO \rightarrow LUMO (95%)
	331	1.86	S ₅	342	0.09	HOMO-1 \rightarrow LUMO+1 (43%) HOMO-2 \rightarrow LUMO (29%) HOMO \rightarrow LUMO+1 (22%)
	331	1.86	S ₆	342	0.08	HOMO-1 \rightarrow LUMO+1 (51%) HOMO-2 \rightarrow LUMO (25%) HOMO \rightarrow LUMO+1 (18%)
12	-	-	T_1	567	-	HOMO \rightarrow LUMO (84%)
	-	-	T ₂	425	-	HOMO-2 \rightarrow LUMO (34%) HOMO-1 \rightarrow LUMO (33%)
	423	0.4	\mathbf{S}_1	419	0.08	HOMO \rightarrow LUMO (84%) HOMO-1 \rightarrow LUMO (12%)
	336	0.96	S_5	343	0.11	HOMO-2 → LUMO (77%)

Table S7. Comparison between experimental and calculated emission wavelengths of complexes **2**, **6**, **8**, **9**, **10** and **12** in DMC solution. Computed values obtained at the B3LYP/6-31+G(d)/LANL2DZ level (IEF-PCM).

λ_{em} / nm	2	6	8	9	10	12
calculated	537	563	558	636	714	773
Exp	451, 476	468, 499	468, 497	512, 548	543, 585	589