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1 Adiabatic and non-adiabatic free energy barriers

In the non-adiabatic (na) approximation, the coupling between the initial and final elec-
tronic states involved in an electron transfer (ET) reaction is neglected (weak coupling
approximation), so that the free energy barrier of the reaction is determined from the
initial and final non-interacting diabatic states. In the case of a non-symmetrical ET
reaction, as illustrated in figure S1, the diabatic potential energy surfaces of the initial
and final states can be approximated by the parabolic functions:

Vi (q) = 1/2f (q − qi)2 (1)

Vf (q) = 1/2f (q − qf )2 + ∆Eif (2)

where qi and qf denote the value of the reaction coordinate at the initial and final states,
i.e. to the system geometry before and after ET. f is the curvature of the two parabolas
(assumed for simplicity to have identical values in the two states) and ∆Eif the energy
difference between the final and initial states at their equilibrium geometries. The crossing
point of the two parabolas (q = qc) is determined by the condition of equality of the two
potential energy curves:

qc =
∆Eif
f

(
1

qf − qi

)
+ (qf + qi) /2 . (3)

Taking the energy origin at the minimum of the initial state parabola, the non-adiabatic
free energy barrier can be written as:

∆E‡na = Vi (qc)− Vi (qi) = 1/2f (qc − qi)2 (4)

Then, substituting qc in the previous equation leads to the expression:

∆E‡na = (λ+ ∆Eif )
2 /4λ with λ = 1/2f (qi − qf )2 (5)

where λ = Vf (qi)− Vf (qf ) is the reorganization energy (see figure S1).
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Figure S1: Adiabatic and non-adiabatic curves for an asymmetric electron transfer reac-
tion.

When the initial and final electronic states interact significantly, they will be coupled
by the Hamiltonian matrix element Hif = Hfi. This coupling is assumed to be inde-
pendent of q. In the limit of slow nuclear motions, the so-called adiabatic (ad) potential
energy curves, W± (q), are obtained by solving the secular equation:∣∣∣∣ Vi (q)−W± (q) Hif

Hif Vf (q)−W± (q)

∣∣∣∣ = 0 . (6)

This leads to the following polynomial equation:

(1/2fQ2
i −W±)

(
1/2fQ2

f + ∆Eif −W±
)
−H2

if = 0

with Qi = q − qi and Qf = q − qf
(7)

To find the expression of the adiabatic free energy barrier, equation (7) has been solved
at the initial (qi) and transition (qc) state geometries, assuming that their position is
unchanged on going from the diabatic to the adiabatic states. First, one can demonstrate
that the discriminant of the previous polynomial can be written as:

D =
(
1/2f

(
Q2
i −Q2

f

)
−∆Eif

)2
+H2

if (8)

1) At the initial state geometry (Qi = 0 and Qf = qi− qf ) the discriminant simplifies to:

D = (λ+ ∆Eif )
2 + 4H2

if (9)
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and the adiabatic potential energies at this point are:

W± =
λ+ ∆Eif

2
±

√
(λ+ ∆Eif )

2

4
+H2

if (10)

2) At the crossing point (q = qc) we can write:

Qi =
∆Eif+λ

f(qf−qi)
Qf =

∆Eif−λ
f(qf−qi) (11)

and then:

1/2f
(
Q2
i −Q2

f

)
= ∆Eif 1/2f

(
Q2
i +Q2

f

)
=

∆E2
if+λ2

2λ
(12)

At this point the discriminat is D = 4H2
if and the adiabatic potential energies are:

W± =
(λ+ ∆Eif )

2

4λ
±Hif = ∆E‡na ±Hif . (13)

Finally, we can determine the adiabatic free energy barrier by calculating the difference
between the transition state and initial energies:

∆E‡ad = W− (qc)−W− (qi) = ∆E‡na −∆

with ∆ = Hif +
λ+∆Eif

2
−

√
(λ+∆Eif)

2

4
+H2

if

(14)

2 Electron transfer rates

The rate constant for electron transfer in the semi-classical approximation (ksc, referred
as the Landau-Zener or LZ rate in the main article) can be related to the classical rate
constant kcl by introducing a thermally averaged electronic transmission coefficient κel
and the nuclear tunneling factor Γn (κel = 1 ⇒ adiabatic, κel 6= 1 ⇒ non-adiabatic;
Γn = 1⇒ no tunneling effects, Γn 6= 1⇒ tunneling effects) [1]:

kLZ = ksc = κelΓnkcl (15)

kcl = νeff exp
{
−β
(
∆E‡na −∆

)}
(16)

where νeff is the frequency along the reaction coordinate. The electronic transmission is
given by:

κel =
2PLZ

1 + PLZ
(17)

PLZ = 1− exp (−2πγ) (18)

2πγ =
π3/2 |Hif |2

hνeff
√
λkBT

(19)

where PLZ is the Landau-Zener transition probability for a single surface crossing event.
The parameter 2πγ determines the adiabaticity of the reaction. If 2πγ � 1 the reaction
is non-adiabatic and the exponent in equation (18) can be expanded in a Taylor series
and truncated after the first order term, giving PLZ = 2πγ and κel = 2PLZ . Insertion
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of this result into equation 15 and assuming that λ + ∆Eif � |Hif | (∆ ≈ 0) gives the
non-adiabatic (or Marcus) ET rate [1, 2, 3]:

kMarcus =
2π

~
|Hif |2

√
1

4πλkBT
exp

(
−β∆E‡na

)
(20)

In the opposite limit 2πγ � 1, the ET is adiabatic and PLZ and κel approach unity. The
rate expression is the same as for “standard” chemical reactions in the classical transition
state approximation kad = kcl [2].

On the other hand, a full quantum-mechanical treatment of non-adiabatic transitions,
based upon Fermi’s golden rule, leads to the Marcus-Levich-Jortner (MLJ) rate equation:

kMLJ =
2π

~
|Hif |2

√
1

4πλskBT

∞∑
n=0

exp (−Seff )
Sneff
n!

exp

{
− (∆Eif + λs + n~ωeff )2

4λskBT

}
(21)

with λi = hνeffSeff = ~ωeffSeff , which turns out [1, 4, 5, 6] to be equivalent to the
Marcus expression in the case of an ET reaction driven by solvent coordinates [7].

The evolution of the Marcus, MLJ and LZ rate expressions as a function of the site
energy difference and the electronic coupling can be compared on Figure S2. Notice the
similarity between the LZ and the Marcus rates, as the latter is the non-adiabatic limit
of the former, and how different is the contour map of the MLJ expression in comparison
with the other two.

Figure S2: Contour plots of the decimal logarithm of the Marcus (left), LZ (Middle) and
MLJ (right) rate expressions as a function of the site energy difference and the electronic
coupling, setting the reorganization energies (λi = 0.147 eV and λs = 0.036 eV) and
effective mode frequency (hνeff = 0.179 eV) to the values calculated for PCBM.
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3 Reorganization energies

Hung-Rhys (HR) factors were obtained from the dimensionless displacement parameters
Bj usually employed in the evaluation of the Franck-Condon (FC) vibronic progressions
in electronic spectra [8]. The latter, assuming the harmonic approximation, are defined
as:

Bj =

√
νj
h

(XK −XH)M1/2Lj (K) (22)

where XK,H are the 3N dimensional vectors of the equilibrium Cartesian coordinates
of the K,H th state (here the neutral and negative molecular states), M is the 3N×3N
diagonal matrix of the atomic masses, and Lj (K) is the 3N vector describing the normal
coordinate Qj of the K state in terms of mass-weighted Cartesian coordinates. The HR
factors were evaluated from:

Sj =
1

2
B2
j (23)
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Table S1: Huang-Rhys factors for C60, PCBM and ThCBM (only Sj > 0.005 are reported)

C60

νeff/cm
−1 Sj

300.3 0.0062
312.9 0.0688
430.1 0.0067
484.8 0.0056
486.6 0.0235
495.6 0.0068
564.8 0.0056
576.1 0.0139
705.3 0.0072
709.4 0.0113
730.0 0.0345
764.4 0.0164
783.6 0.0256
802.2 0.0640
837.7 0.0289
838.1 0.0241

1017.7 0.0392
1128.5 0.0505
1200.5 0.0169
1292.1 0.0133
1308.5 0.0065
1363.4 0.0101
1435.5 0.0087
1543.6 0.0386
1597.3 0.0091
1603.5 0.0200

PCBM

νeff/cm
−1 Sj

14.0 0.3072
18.6 0.1790
23.1 0.1821
42.0 0.0688
46.8 0.0177
53.5 0.0106
66.7 0.0136

105.0 0.0184
107.2 0.0214
128.5 0.0071
210.0 0.0146
272.3 0.0181
282.8 0.0154
300.5 0.0191
428.5 0.0855
436.2 0.0477
455.1 0.0201
486.6 0.0154
488.7 0.0147
540.0 0.0172
704.8 0.0486
706.6 0.0094
706.8 0.0162
714.4 0.0075
721.1 0.0300
732.1 0.0071
755.9 0.0149
767.1 0.0123
903.7 0.1203
908.8 0.0093

1132.6 0.0119
1221.8 0.0259
1222.2 0.0057
1274.3 0.0054
1454.8 0.0442
1457.4 0.0074
1490.8 0.0943
1491.0 0.0055
1492.8 0.0145
1596.0 0.0165
1601.8 0.0255
1826.4 0.0667
3067.2 0.0100
3068.0 0.0495

ThCBM

νeff/cm
−1 Sj

13.8 0.2034
19.4 0.5953
24.1 0.2383
42.0 0.1571
58.0 0.0223
63.6 0.0081
98.7 0.0054

106.3 0.0674
177.1 0.0075
206.7 0.0191
240.7 0.0061
254.4 0.0052
263.8 0.0053
266.5 0.0187
285.0 0.0155
307.4 0.0185
429.2 0.0948
437.5 0.0328
455.6 0.0243
487.7 0.0227
489.8 0.0070
543.3 0.0167
706.6 0.0122
707.7 0.0451
709.0 0.0453
710.6 0.0073
722.9 0.0434
723.8 0.0096
732.3 0.0053
733.2 0.0057
753.9 0.0079
767.0 0.0162
900.2 0.0383
902.6 0.2838
1032.7 0.0060
1131.5 0.0127
1222.4 0.0696
1454.5 0.0458
1457.4 0.0066
1490.7 0.0955
1492.7 0.0399
1596.0 0.0148
1601.7 0.0269
1827.5 0.1667
3067.9 0.1472
3068.9 0.0198
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4 Electronic properties

Figure S3: Correlation diagram of the site energies calculated between the L0, L1 and
L2 orbitals of 7 different PCBM dimers at different DFT and semi-empirical levels.

Figure S4: Correlation diagram of the site energy differences calculated between the L0,
L1 and L2 orbitals of 7 different PCBM dimers at different DFT and semi-empirical
levels.
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5 Results for the Marcus and MLJ rate expressions

The ET rates forming the F1-networks calculated with the Marcus and MLJ expressions
are reported in Figures S5 and S6. Like those from the LZ expression which are plotted
in the main text, they are represented by cones whose basis areas are proportional to the
rates. As the LZ, Marcus and MLJ expressions can sometimes furnish ET rates differing
by orders of magnitude, different scaling factors have been used to represent these three
sets of data. Despite this difference in the representations of the rates in Figures 6, S5
and S6, we can clearly notice the good qualitative agreement of the results provided
by the three expressions. Only a small disagreement can be noticed in the size of the
cones for some particularly asymmetric pathways defined between non-equivalent sites in
the triclinic structures. These differences can be rationalized by carefully analysing the
position of these pathways on the maps of the LZ, Marcus and MLJ rates in Figure S2.

Figures S7 and S8 represent the effective hopping probabilities resulting from our
KMC simulations performed on the Marcus and MLJ F1-networks. Those for the simu-
lations including the L1 and L2 orbitals (F3-network) are given in Figures S9 and S10.
Again, the agreement between the results obtained with the three rate expressions is
evident. The dimensionality and main transport directions of the F1- and F3-networks
found with the LZ expression are retained when using the Marcus or MLJ ones. The mo-
bility tensors obtained from these KMC simulations are compiled in Tables S2 (Marcus)
and S3 (MLJ). They are also represented by ellipsoids in Figures S7, S8, S9 and S10.
The Marcus and MLJ mobilities are respectively lower (µMarcus ∼ 0.75µLZ) and higher
(µMLJ ∼ 3µLZ) than those obtained with the LZ expression. This can be explained by
the fact that electron transport is globally dominated by L0L0 transitions (∆EL0L0 = 0),
for which we always have kMarcus < kLZ < kMLJ in the range of our electronic couplings
(J < 65 meV).

Finally, Figures S11, S12 and S13 report histograms of the ET rates for all the crystal
structures, respectively calculated with the LZ, Marcus and MLJ expressions. These
have been decomposed according to the different molecular orbital contributions. For
the PCBM/DCM and PCBM/CS2 structures, the separation between the distributions
of the rates forming the F1-network (L0L0 transitions) and those allowing to escape it,
which was observed for the LZ expression in the main text, is also visible for the other
two expressions. This confirmed the insensitivity of these two structures to the inclusion
of the L1 and L2 orbitals in the percolation network. Notice for the MLJ expression that
the endothermal transitions can display extremely small ET rates (lower than 1s−1). This
is consistent with the landscape of the map of the MLJ expression in Figure S2 which
abruptly decrease when ∆E increases, in the region of ∆E > 0. The main difference
between Figures S11 and S12 is that the Marcus expression provides higher ET rates
for strongly exothermal transitions (L2L0). Again, this is consistent with the maps in
Figure S2, which show that the Marcus ET rates are always larger than the LZ ones when
∆E < −0.18 eV.
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Figure S5: Representation of the Marcus ET rates for the L0L0 transitions (cones with
bases proportional to the rates, pointing towards the destination fullerene), forming the
F1-networks.
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Figure S6: Representation of the MLJ ET rates for the L0L0 transitions (cones with
bases proportional to the rates, pointing towards the destination fullerene), forming the
F1-networks.
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Figure S7: Effective hopping probabilities (cones) and associated mobility tensors (ellip-
soids) within the F1-networks, obtained for the Marcus expression.
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Figure S8: Effective hopping probabilities (cones) and associated mobility tensors (ellip-
soids) within the F1-networks, obtained for the MLJ expression.
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Figure S9: Effective hopping probabilities (cones) and associated mobility tensors (ellip-
soids) within the F3-networks, obtained from the Marcus expression.
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Figure S10: Effective hopping probabilities (cones) and associated mobility tensors (el-
lipsoids) within the F3-networks, obtained from the MLJ expression.

14



PCBM/DCM

Eigenvalues Eigenvectors
x y z

F
1

0.69 -1.00 0.00 0.01
0.17 0.01 0.00 1.00
0.08 0.00 -1.00 0.00

F
3

0.69 -1.00 0.00 0.01
0.17 -0.01 0.00 -1.00
0.08 0.00 1.00 0.00

PCBM/CS2

Eigenvalues Eigenvectors
x y z

F
1

0.53 -1.00 0.00 0.01
0.09 0.01 0.01 1.00
0.07 0.00 -1.00 0.01

F
3

0.54 1.00 0.00 0.00
0.12 0.00 0.98 0.19
0.05 0.00 -0.13 0.99

PCBM/DCB

Eigenvalues Eigenvectors
x y z

F
1

0.25 -0.43 0.00 -0.90
0.19 0.00 -1.00 0.00
0.00 0.90 0.00 -0.43

F
3

0.30 0.43 0.00 0.90
0.25 0.00 1.00 0.00
0.00 0.91 0.00 -0.42

n-PCBM

Eigenvalues Eigenvectors
x y z

F
1

0.30 0.00 1.00 0.00
0.02 -0.62 0.00 -0.79
0.01 -0.76 0.00 0.65

F
3

0.36 0.00 -1.00 0.00
0.08 0.83 0.00 -0.55
0.06 -0.53 0.00 -0.85

PCBM/MCB

Eigenvalues Eigenvectors
x y z

F
1

0.22 0.62 0.18 0.76
0.04 0.80 -0.06 -0.60
0.03 0.04 -0.98 0.17

F
3

0.25 0.60 0.12 0.79
0.09 -0.07 -0.98 0.18
0.06 0.81 -0.16 -0.57

R
1

0.05 1.00 0.00 0.00
0.00 0.01 1.00 0.00
0.00 0.00 0.95 0.30

R
3

0.06 1.00 0.00 0.00
0.00 0.01 1.00 0.00
0.00 0.00 0.84 0.55

ThCBM/CS2

Eigenvalues Eigenvectors
x y z

F
1

1.00 1.00 0.00 0.00
0.01 0.00 -0.99 -0.16
0.00 0.00 -0.18 0.98

F
3

0.99 1.00 0.00 0.00
0.04 0.00 -0.50 -0.87
0.01 0.00 -0.90 0.44

R
1

0.95 1.00 0.00 0.00
0.00 0.00 -0.18 -0.98
0.00 0.00 -0.50 0.87

R
3

0.95 1.00 0.00 0.00
0.00 0.00 -0.18 -0.98
0.00 0.00 -0.39 0.92

Table S2: Eigenvalues (cm2V−1s−1) and eigenvectors of the mobility tensors calculated
considering either the F1-, F3-, R1- or R3-networks (using the Marcus rates) for each
crystal structure.
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PCBM/DCM

Eigenvalues Eigenvectors
x y z

F
1

2.09 -1.00 0.00 0.02
0.54 0.02 0.00 1.00
0.26 0.00 -1.00 0.00

F
3

2.09 -1.00 0.00 0.02
0.54 0.02 0.00 1.00
0.26 0.00 -1.00 0.00

PCBM/CS2

Eigenvalues Eigenvectors
x y z

F
1

1.61 -1.00 0.00 0.01
0.29 0.01 0.02 1.00
0.22 0.00 -1.00 0.02

F
3

1.61 1.00 0.00 -0.01
0.23 0.00 0.91 0.41
0.12 0.00 -0.31 0.95

PCBM/DCB

Eigenvalues Eigenvectors
x y z

F
1

0.83 -0.43 0.00 -0.90
0.61 0.00 -1.00 0.00
0.00 0.88 0.00 -0.48

F
3

0.85 0.43 0.00 0.90
0.66 0.00 1.00 0.00
0.00 0.88 0.00 -0.47

n-PCBM

Eigenvalues Eigenvectors
x y z

F
1

1.01 0.00 1.00 0.00
0.07 -0.62 0.00 -0.79
0.02 -0.73 0.00 0.68

F
3

1.03 0.00 1.00 0.00
0.12 -0.69 0.00 -0.73
0.09 -0.71 0.00 0.70

PCBM/MCB

Eigenvalues Eigenvectors
x y z

F
1

0.36 0.76 0.22 0.62
0.11 0.70 -0.10 -0.71
0.07 -0.06 -0.93 0.36

F
3

0.50 -0.63 0.08 -0.78
0.23 -0.32 -0.91 0.24
0.19 -0.60 0.67 0.43

R
1

0.18 1.00 0.00 0.00
0.00 0.01 1.00 0.00
0.00 0.00 0.83 0.56

R
3

0.20 1.00 0.00 0.00
0.00 0.01 1.00 0.00
0.00 -0.03 -0.49 0.87

ThCBM/CS2

Eigenvalues Eigenvectors
x y z

F
1

3.33 1.00 0.00 0.00
0.01 0.00 -0.73 -0.68
0.00 0.00 -0.57 0.82

F
3

3.32 1.00 0.00 0.00
0.03 0.00 0.54 0.84
0.01 0.00 -0.85 0.53

R
1

3.26 -1.00 0.00 0.00
0.00 0.00 0.18 0.98
0.00 0.00 -0.87 0.49

R
3

3.24 1.00 0.00 0.00
0.00 0.00 -0.18 -0.98
0.00 0.00 -0.98 0.22

Table S3: Eigenvalues (cm2V−1s−1) and eigenvectors of the mobility tensors calculated
considering either the F1-, F3-, R1- or R3-networks (using the MLJ rates) for each crystal
structure.
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Figure S11: Decomposition by molecular orbital contributions of the LZ rates distribu-
tions of the different crystal structures. Green, blue and red bins are respectively the
contributions of flat, upward, and downward ETs.
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Figure S12: Decomposition by molecular orbital contributions of the Marcus rates distri-
butions of the different crystal structures. Green, blue and red bins are respectively the
contributions of flat, upward, and downward ETs.
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Figure S13: Decomposition by molecular orbital contributions of the MLJ ET rates
distributions of the different crystal structures. Green, blue and red bins are respectively
the contributions of flat, upward, and downward ETs.
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6 Electric field dependency

We performed additional KMC simulations on the F1-network (L0L0 transitions only)
of the PCBM/CS2 structure, changing the norm of the applied electric field (F ). F was
applied along the main direction of the mobility tensor reported in our paper ([100],
x-axis) and scanned over the range 104-107V cm−1. We monitored the evolution of the
average (over 16 different KMC simulations) ET rates, the number of hopping events
along F and its opposite direction [100], as well as the x-, y- and z-components of the
drift distance and velocity. These results are reported in Figure S14.

As expected for the transport of negatively charged electrons, the ET rate in the
direction of the electric field ([100]) decreases when its norm increases, while in the
opposite direction ([100]) it first increases and then decreases once the inverted region of
the rate expression is reached (after 4 ·106V cm−1). The average of all the other ET rates
within the structure is also reported in Figure S14 (green line). As these rates belong
to a plane nearly perpendicular to the electric field direction, their average is not very
sensitive to the increase in F . Despite this low sensitivity, these rates enter in competition
with the [100] and [100] rates when F becomes higher than ∼ 3 ·106 and ∼ 8 ·106V cm−1,
respectively. This competition is at the origin of the sensitivity of the average number of
hopping events in that plane, when F becomes higher than 3 · 106V cm−1. At low electric
fields this number is non-negligible, indicating that the charge spends appreciable time
diffusing in this plane during its global drift along the [100] direction. At very high
electric field (107V cm−1), the charge hops exclusively in this plane.

The plots of the drift distance confirm that the electron difts in the direction opposite
to the electric field. Indeed, the main component of the drift distance is the x-component,
which is always negative (dx < 0). At low electric fields, the charge performs a random
walk about its starting position, leading to a null drift distance. When we increase
the electric field, dx follow the evolution of the [100] rate. At very high electric fields
(107V · cm−1), , dz becomes non-negligible while dy stays null. This is due to the fact
that the electron is confined in a plane which is almost but not perfectly orthogonal to
F (in the PCBM/CS2 structure, α = 90◦, β = 91.62◦ and γ = 90◦). Overall, the drift
velocity follows the same trend as the drift distance.

Using the previous results, the electron mobility has been evaluated along the electric
field direction as: µ (F ) = |Vx (F )| /F . Looking at this expression, the evolution of
µ (F ) is given by the product of two functions: the drift velocity (|Vx (F )|) and the
inverse of the electric field (1/F ). Depending on the evolution of these two functions,
the resulting mobility may increase or decrease. In our case, as the inverted region of
the rate expression is reached at 4.106 V · cm−1, a region where the 1/F function is still
decreasing very abruptly, µ (F ) decreases with F (see Figure S15).
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Figure S14: Evolution of the different ouputs of the KMC simulations performed to
compute the electron mobility as a function of the applied electric field.

Figure S15: Electron mobility within the PCBM/CS2 structure as a function of the
applied electric field.

21



References

[1] B. S. Brunschwig, J. Logan, M. D. Newton, and N. Sutin. A semiclassical treatment
of electron-exchange reactions. application to the hexaaquoiron(ii)-hexaaquoiron(iii)
system. Journal of the American Chemical Society, 102:5799–5809, 1980.

[2] H. Oberhofer and J. Blumberger. Revisiting electronic couplings and incoherent hop-
ping models for electron transport in crystalline c60 at ambient temperatures. Physical
Chemistry Chemical Physics, 14:13846–13852, 2012.

[3] R.A. Marcus. On the theory of oxidation-reduction reactions involving electron trans-
fer. i. Journal of Chemical Physics, 24:966, 1956.

[4] V. Rühle, A. Lukyanov, F. May, M. Schrader, T. Vehoff, J. Kirkpatrick, B. Baumeier,
and D. Andrienko. Microscopic simulations of charge transport in disordered organic
semiconductors. Journal of Chemical Theory and Computation, 7:3335–3345, 2011.

[5] R.A. Marcus. Electron transfer reactions in chemistry. theory and experiment. Re-
views of Modern Physics, 65:599, 1993.

[6] R. Silbey, J. Jortner, S. A. Rice, and M. T. Vala Jr. Exchange effects on the electron
and hole mobility in crystalline anthracene and naphthalene. Journal of Chemical
Physics, 42:733, 1965.

[7] Chemical Dynamics in Condensed Phases. Oxford University Press, 2006.

[8] F. Negri and G. Orlandi. The t1 resonance raman spectra of 1,3,5-hexatriene and its
deuterated isotopomers: An abinitio re-investigation. Journal of Chemical Physics,
103:2412–2419, 1995.

22


