SUPPORTING INFORMATION

Heteronuclear Lanthanide-Based Coordination Polymers Exhibiting Tunable Multiple Emission Spectra.

Xiao Fan^{a,b}, Stéphane Freslon^{a,b}, Carole Daiguebonne^{a,b,*}, Guillaume Calvez^{a,b}, Laurent Le Polles^{a,c}, Kevin Bernot^{a,b}, Olivier Guillou^{a,b,*}.

^a Université européenne de Bretagne, France.

^b INSA, UMR 6226 "Institut des Sciences Chimiques de Rennes", F-35708 Rennes.

^c ENSCR, UMR 6226 "Institut des Sciences Chimiques de Rennes", F-35708 Rennes

Figure S1. Thermal analyses of $Na_2(hip), H_2O$.

Figure S2. UV-vis absorption spectrum of an aqueous solution $(10mg.L^{-1})$ of $Na_2(hip), H_2O$

Figure S3. Simulated and experimental powder X-ray diffraction diagrams of Ce-based microcrystalline powder with chemical formula $[Ce_2(hip)_3(H_2O)_{9,6}H_2O]_{\infty}$. The simulated X-ray diffraction pattern has been calculated on the basis of a reported crystal structure $(n^{\circ}CCDC: 989811)^{[59]}$

Figure S4. Powder X-ray diffraction diagrams of the homo-nuclear compounds $[Ln(hip)_2(H_2O)_{10}, (hip), 4H_2O]_{\infty}$ with Ln = Pr - Lu.

Figure S5. Refined cell parameters for $[Ln_2(hip)_2(H_2O)_{10}, (hip), 4H_2O]_{\infty}$ with Ln = Pr-Lu or Y versus the involved lanthanide ion. Numerical results are listed in table S1.

Figure S6. Powder X-ray diffraction patterns for some $[Eu_{2-2x}Tb_{2x}(hip)_2(H_2O)_{10},(hip),4H_2O]_{\infty}$ (*left*) and $[Gd_{2-2x}Tb_{2x}(hip)_2(H_2O)_{10},(hip),4H_2O]_{\infty}$ (right) compounds with $0.1 \le x \le 0.9$.

Figure S7. Emission spectrum of $[Gd(hip)_2(H_2O)_{10}, (hip), 4H_2O]_{\infty}$ recorded at 77K under UV irradiation ($\lambda_{exc} = 343$ nm)

Figure S8. Solid state absorption spectrum of $[Gd(hip)_2(H_2O)_{10}, (hip), 4H_2O]_{\infty}$.

Figure S9. Absorbance versus concentration of dilute aqueous solutions of Na₂(hip),H₂O

Figure S10. TDXD diagrams under N₂ flux between room temperature and 850°C for $[Gd_2(hip)_2(H_2O)_{10}, (hip), 4H_2O]_{\infty}$.

Figure S11. Emission spectra of $[Tb_2(hip)_2(H_2O)_{10}, (hip), 4H_2O]_{\infty}$ microcrystalline powders $(\lambda_{exc} = 343 \text{ nm}).$

Figure S12. Excitation and emission spectra of $[Eu_1Tb_1(hip)_2(H_2O)_{10}, (hip), 4H_2O]_{\infty}$.

LII = II Lu 0I	T			
	a (Å)	b (Å)	c (Å)	β (°)
Pr	17.90(1)	21.42(1)	19.92(1)	107.67(1)
Nd	17.91(1)	21.43(1)	19.91(1)	107.66(1)
Sm	17.89(1)	21.43(1)	19.91(1)	107.66(1)
Eu	17.90(1)	21.42(1)	19.92(1)	107.65(1)
Gd	17.91(1)	21.42(1)	19.91(1)	107.65(1)
Tb	17.91(1)	21.44(1)	19.87(1)	107.66(1)
Dy	17.91(1)	21.41(1)	19.92(1)	107.66(1)
Но	17.90(1)	21.42(1)	19.91(1)	107.63(1)
Y	17.90(1)	21.42(1)	19.92(1)	107.63(1)
Er	17.90(1)	21.41(1)	19.92(1)	107.64(1)
Yb	17.89(1)	21.42(1)	19.91(1)	107.63(1)
Lu	17.90(1)	21.41(1)	19.92(1)	107.63(1)

Table S1. Refined cell parameters for $[Ln(hip)_2(H_2O)_{10},(hip),4H_2O]_{\infty}$ with Ln = Pr-Lu or Y

Table S2. Selected hydrogen bond distances in stair-like double-chains molecular motifs.				
Atom 1	symmetry	Atom 2	symmetry	distance (Å)
O2	x, y, z	O31	x, y, z	2.6546(5)
O9	x, y, z	O30	x, y, z	2.6312(6)
O19	x, y, z	O27	-1+x, y, z	2.7248(6)
O15	x, y, z	O28	x, y, z	2.6517(5)
O16	x, y, z	O21	-1+x, y, z	2.7306(5)
O14	x, y, z	O34	-1+x, y, z	2.7561(6)
011	x, y, z	O35	x, y, z	2.7015(5)

Table S3. π -stacking interactions. Selected C-C distances.				
Atom 1	symmetry	Atom 2	symmetry	distance (Å)
C102	x, y, z	C104	x, y, z	3.7834(10)
C58	x, y, z	C77	x, y, z	3.7564(9)
C50	x, y, z	C70	x, y, z	3.7468(9)
C69	x, y, z	C89	x, y, z	3.8233(10)
C48	x, y, z	C72	x, y, z	3.8141(10)
C63	x, y, z	C202	x, y, z	3.7496(9)

mours.					
Atom 1	Symmetry	Atom 2	symmetry	distance (Å)	
O17	x, y, z	O57	-x, 1-y, 1-z	3.2494(5)	
O45	x, y, z	O51	1.5+x, 0.5-y, 0.5+z	2.7208(6)	
O36	x, y, z	O57	0.5-x, -0.5+y, 0.5-z	2.8414(5)	
O31	x, y, z	O47	x, y, z	2.9350(6)	
O49	x, y, z	O53	1-x, 1-y, 1-z	3.4662(7)	
O4	x, y, z	O49	x, y, z	2.8242(6)	
O25	x, y, z	O49	0.5+x, 0.5-y, -0.5+z	2.7631(5)	
O15	x, y, z	O42	x, y, z	2.7671(6)	
O4	x, y, z	O43	0.5+x, 0.5-y, 0.5+z	2.8200(5)	
					1

Table S4. Selected hydrogen bond distances between stair-like double-chains molecular motifs.

Table S5. π -stacking interactions between stair-like double-chains molecular motifs.. Selected C-C distances.

Atom 1	symmetry	Atom 2	symmetry	distance (Å)
C79	x, y, z	C88	x, y, z	3.6755(7)
C67	x, y, z	C83	x, y, z	3.4982(7)
C53	x, y, z	C99	x, y, z	3.8969(7)
C61	x, y, z	C65	x, y, z	3.9559(8)
C56	x, y, z	C93	x, y, z	3.5828(7)
C59	x, y, z	C64	x, y, z	3.8255(8)

Table S6. Colorimetric coordinates for $[Gd_{2-2x}Tb_{2x}(hip)_2(H_2O)_{10},(hip),4H_2O]_{\infty}$ with x \geq 0.1 under UV irradiation ($\lambda_{exc} = 345$ nm).

compound	Colorimetric coordinates	
Х	Х	у
1	0.34(1)	0.60(1)
0.9	0.34(1)	0.60(1)
0.8	0.34(1)	0.60(1)
0.7	0.34(1)	0.60(1)
0.6	0.34(1)	0.60(1)
0.5	0.34(1)	0.60(1)
0.4	0.33(1)	0.60(1)
0.3	0.33(1)	0.60(1)
0.2	0.33(1)	0.60(1)
0.1	0.33(1)	0.61(1)

Compound	Colorimetric	e coordinates
Х	Х	У
1	0.34(1)	0.59(1)
0.9	0.34(1)	0.58(1)
0.8	0.34(1)	0.57(1)
0.75	0.36(1)	0.52(1)
0.7	0.35(1)	0.57(1)
0.65	0.36(1)	0.46(1)
0.6	0.35(1)	0.54(1)
0.55	0.36(1)	0.36(1)
0.5	0.35(1)	0.48(1)
0.4	0.35(1)	0.39(1)
0.3	0.35(1)	0.29(1)
0.2	0.35(1)	0.24(1)
0.1	0.34(1)	0.23(1)
0	0.34(1)	0.21(1)

Table S7. Colorimetric coordinates for $[Eu_{2-2x}Tb_{2x}(hip)_2(H_2O)_{10},(hip),4H_2O]_{\infty}$ with $0 \le x \le 1$ under UV irradiation ($\lambda_{exc} = 345$ nm).

Table S8. Colorimetric coordinates for $[Eu_{2-2x}Tb_{2x}(hip)_2(H_2O)_{10},(hip),4H_2O]_{\infty}$ with $0 \le x \le 1$ under UV irradiation ($\lambda_{exc} = 375$ nm).

	Colorimetric coordinates	
Х	Х	У
1	0.26(1)	0.57(1)
0.9	0.27(1)	0.57(1)
0.8	0.29(1)	0.56(1)
0.75	0.31(1)	0.55(1)
0.7	0.32(1)	0.53(1)
0.65	0.36(1)	0.51(1)
0.6	0.38(1)	0.50(1)
0.55	0.44(1)	0.46(1)
0.5	0.47(1)	0.44(1)
0.4	0.57(1)	0.38(1)
0.3	0.62(1)	0.35(1)
0.2	0.66(1)	0.33(1)
0.1	0.67(1)	0.33(1)
0	0.68(1)	0.32(1)

	Colorimetric coordinates	
х	Х	у
0.9	0.65(1)	0.32(1)
0.8	0.60(1)	0.37(1)
0.75	0.64(1)	0.35(1)
0.7	0.65(1)	0.34(1)
0.65	0.65(1)	0.34(1)
0.6	0.66(1)	0.33(1)
0.55	0.67(1)	0.33(1)
0.5	0.67(1)	0.32(1)
0.4	0.67(1)	0.33(1)
0.3	0.67(1)	0.33(1)
0.2	0.67(1)	0.33(1)
0.1	0.67(1)	0.33(1)
0	0.67(1)	0.33(1)

Table S9. Colorimetric coordinates for $[Eu_{2-2x}Tb_{2x}(hip)_2(H_2O)_{10},(hip),4H_2O]_{\infty}$ with $0 \le x \le 1$ under UV irradiation ($\lambda_{exc} = 395$ nm).