Supporting Information

Unconventional magnetism in ThCr₂Si₂-type phosphides, La_{1-x}Nd_xCo₂P₂

Corey M. Thompson,^{a,†} Kirill Kovnir,^{a,‡} V. Ovidiu Garlea,^b Eun Sang Choi,^c H. D. Zhou,^{c,§} and Michael

Shatruk*^{a,c}

^aDepartment of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA ^bQuantum Condensed Matter Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA

^cNational High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32306, USA

Present addresses:

[†]Department of Chemistry, McMaster University, Hamilton, Ontario L8S 4M1, Canada [‡]Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, USA

 $^{\$}$ Department of Physics, University of Tennessee at Knoxville, Knoxville, Tennessee 37966, USA

Email address: shatruk@chem.fsu.edu

PageFigure S1. Typical SEM Image of a $La_{1-x}Nd_xCo_2P_2$ crystal.S2Figure S2-3. Temperature dependent magnetization plots for $La_{1-x}Nd_xCo_2P_2$ phases.S2Figure S4. Temperature dependent plot of magnetic reflection for $La_{0.25}Nd_{0.75}Co_2P_2$.S3Table S1-S2. Magnetic structure refinement results for $La_{1-x}Nd_xCo_2P_2$; x = 0.50 and 0.75.S4Figure S5. Two possible magnetic structure models for $La_{1-x}Nd_xCo_2P_2$.

Fig. S1 Typical SEM image of a La_{1-x}Nd_xCo₂P₂ crystal.

Fig. S2 Temperature dependence of zero-field cooled (red) and field cooled (blue) magnetic susceptibilities at 10 Oe for: a) La_{0.88}Nd_{0.12}Co₂P₂; b) La_{0.75}Nd_{0.25}Co₂P₂; c) La_{0.63}Nd_{0.37}Co₂P₂; and d) La_{0.50}Nd_{0.50}Co₂P₂.

Fig. S3 Temperature dependence of zero-field cooled (red) and field cooled (blue) magnetic susceptibilities at 10 Oe for: a) La0.37Nd0.63Co2P2 and b) La0.25Nd0.75Co2P2.

Fig. S4 Temperature dependence of the intensity of the neutron powder diffraction magnetic reflection $(1,0,1/2)_{M}$ of La_{0.25}Nd_{0.75}Co₂P₂.

Table S1 Results of the magnetic structure refinement for $La_{0.50}Nd_{0.50}Co_2P_2$ from neutron powder diffraction data collected at various temperatures with the 2.41 Å wavelength. The results of refinements obtained with the 1.54 Å wavelength are also provided, below the 2.41Å data at 4 K. The results of the simultaneous refinement of both wavelengths are shown in brackets.

Temp.	Nd position [≠]	\mathbf{R}_{mag} *	Nd moment	Co moment
(K)	Model	(%)	$\mu_{ m B}$	$\mu_{ m B}$
4	$(0,0,0)$ & $(1/2,1/2,1/2)^{a}$	42.0	2.2(1)	0.85(5)
		41.5	2.2(1)	0.74(6)
		[68, 35.2]	[2.2(1)]	[0.80(6)]
	$(1/2, 1/2, 1/2)^{b}$	61.5	3.1(2)	0.73(5)
		41.2	3.1(2)	0.67(6)
		[66.5, 34.4]	[3.1(2)]	[0.73(6)]
50	$(0,0,0)$ & $(1/2,1/2,1/2)^{a}$	68.6	0.7(2)	0.74(5)
	$(1/2, 1/2, 1/2)^{b}$	65.0	0.7(2)	0.75(5)
125	$(0,0,0)$ & $(1/2,1/2,1/2)^{a}$	54.2	0.2(3)	0.69(6)
	$(1/2, 1/2, 1/2)^{b}$	54.2	0.2(3)	0.69(6)

^{\neq}In both magnetic structure models the order of the cobalt moments along the *c*-axis is the same with the sequence ++--,++--.

^aThis magnetic structure model corresponds to the order of the Nd³⁺ moments ++--,++--.

^bEvery other Nd layer has disordered moments and the sequence is 0-0+,0-0+.

Table S2 Results of the magnetic structure refinement for $La_{0.25}Nd_{0.75}Co_2P_2$ from neutron powder diffraction data collected at various temperatures with the 2.41 Å wavelength. The results of refinements obtained with the 1.54 Å wavelength are also provided, below the 2.41Å data at 4 K. The results of the simultaneous refinement of both wavelengths are shown in brackets.

Temp.	Nd position [≠]	R _{mag} *	Nd moment	Co moment
(K)	Model	(%)	$\mu_{ m B}$	$\mu_{ m B}$
4	$(0,0,0)$ & $(1/2,1/2,1/2)^{a}$	59.0	2.03(9)	0.94(7)
		44.8	2.07(8)	0.69(7)
		[59.6, 49.2]	[2.04(9)]	[0.77(7)]
	$(1/2, 1/2, 1/2)^{b}$	56.9	2.9(1)	0.82(6)
		41.6	2.9(1)	0.60(6)
		[55.7, 45.9]	[2.9(1)]	[0.67(6)]
15	$(0,0,0)$ & $(1/2,1/2,1/2)^{a}$	62.6	1.6(1)	0.88(8)
	$(1/2, 1/2, 1/2)^{b}$	57.9	2.2(2)	0.81(9)
50	$(0,0,0) \& (1/2,1/2,1/2)^{a}$	60.9	0.9(2)	0.8(1)
	$(1/2, 1/2, 1/2)^{b}$	56.5	1.2(3)	0.7(1)
100	$(0,0,0) \& (1/2,1/2,1/2)^{a}$	70.4	0.5(3)	0.7(1)
	$(1/2, 1/2, 1/2)^{b}$	69.6	0.6(3)	0.7(1)
125	$(0,0,0) \& (1/2,1/2,1/2)^{a}$	62.3	0.3(2)	0.88(7)
	$(1/2, 1/2, 1/2)^{b}$	61.4	0.4(2)	0.88(7)

* Note that the residual factors for the magnetic phase (R-mag) are quite large due to the small intensities of the magnetic reflections as compared to the nuclear Bragg peaks.

Fig. S5 The two possible magnetic structure models of $La_{1-x}Nd_xCo_2P_2$. In both magnetic structure models the order of the cobalt moments along the *c*-axis is the same with the sequence ++--,++--. a) This magnetic structure model corresponds to the order of the Nd³⁺ moments ++--,++-- (Nd positions (0,0,0 & $\frac{1}{2},\frac{1}{2},\frac{1}{2}$)). b) Every other Nd layer has disordered moments and the sequence is 0-0+,0-0+ (Nd position ($\frac{1}{2},\frac{1}{2},\frac{1}{2}$)).