Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2014

Supplementary Information

SwitchableDielectricBehaviourAssociatedwithAboveRoom-TemperaturePhaseTransitioninN-IsopropylbenzylammoniumDichloroacetate (N-IPBADC)

Chengmin Ji,^a Zhihua Sun,^{a,b,c} Shu-Quan Zhang,^{a,b} Tianliang Chen,^a Pan Zhou,^a Yuanyuan Tang, ^a Sangen Zhao,^a Junhua Luo^{a,b,*}

^aKey Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P.R. China. E-mail: jhluo@fjirsm.ac.cn. Fax: (+86) 0591483730955. Tel: (+86) 0591483730955.

^bState Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P.R. China.

^cState Key Laboratory of Crystal Material, Shandong University, Jinan, 250100, China.

-					-
Temperature (K)	293	323	343	356	358
Empirical formula	$C_{12}H_{17}Cl_2NO_2$	$C_{12}H_{17}Cl_2NO_2$	$C_{12}H_{17}Cl_2NO_2$	$C_{12}H_{17}Cl_2NO_2$	$C_{12}H_{17}Cl_2NO_2$
Crystal system	Monoclinic	Monoclinic	Monoclinic	Monoclinic	Monoclinic
Space group	$P2_{1}/c$	<i>P</i> 2 ₁ /c			
a (Å)	9.700(8)	9.7598(3)	9.7856(5)	9.7987(8)	9.8256(9)
<i>b</i> (Å)	8.569(6)	8.5995(2)	8.6119(3)	8.6320(4)	8.6329(5)
<i>c</i> (Å)	17.378(14)	17.5609(6)	17.6992(11)	17.6834(11)	17.8841(19)
$V(Å^3)$	1389.7(18)	1416.03(7)	1429.77(13)	1444.08(16)	1450.2(2)
β (deg.)	105.825(13)	106.105(4)	106.549 (5)	106.919(7)	107.061 (8)
Ζ	4	4	4	4	4
Calculated density	1.329	1.305	1.292	1.280	1.274
(g cm ⁻³)					
Absorption	0.457	0.449	0.445	0.440	0.438
coefficient (mm ⁻¹)					
<i>F</i> (000)	584.0	584.0	584.0	584.0	584.0
Theta range for data	2.67 to 27.50	3.21 to 26.37	3.20 to 26.37	3.19 to 26.37	3.19 to 26.37

Table S1. Crystal data and structural refinement for N-IPBADC at different temperatures.

-12≤h≤12,	-12≦h≤12,	- 12≦h≤12,	-12≦h≤12,	-12≤h≤12,
- 10≤k≤11,	- 10≤k≤10,	- 10≤k≤10,	- 10≤k≤10,	- 10≤k≤10,
-22≤l≤22	-21≤l≤21	-20≤l≤22	-22≤l≤20	-21≤l≤22
10400 / 3168	8874 / 2886	8983 / 2922	9116 / 2957	8979 / 2965
1.103	1.073	1.088	1.102	1.031
0.0560, 0.1437	0.0688, 0.1916	0.0824, 0.2368	0.0889, 0.2759	0.0475, 0.1230
0.0702, 0.1604	0.0879, 0.2137	0.1060, 0.2664	0.1167, 0.3091	0.0810, 0.1526
	-12≤h≤12, -10≤k≤11, -22≤l≤22 10400 / 3168 1.103 0.0560, 0.1437 0.0702, 0.1604	$-12 \le h \le 12$, $-12 \le h \le 12$, $-10 \le k \le 11$, $-10 \le k \le 10$, $-22 \le l \le 22$ $-21 \le l \le 21$ $10400 / 3168$ $8874 / 2886$ 1.103 1.073 $0.0560, 0.1437$ $0.0688, 0.1916$ $0.0702, 0.1604$ $0.0879, 0.2137$	$-12 \le h \le 12$, $-12 \le h \le 12$, $-12 \le h \le 12$, $-10 \le k \le 11$, $-10 \le k \le 10$, $-10 \le k \le 10$, $-22 \le 1 \le 22$ $-21 \le 121$ $-20 \le 1 \le 22$ $10400 / 3168$ $8874 / 2886$ $8983 / 2922$ 1.103 1.073 1.088 $0.0560, 0.1437$ $0.0688, 0.1916$ $0.0824, 0.2368$ $0.0702, 0.1604$ $0.0879, 0.2137$ $0.1060, 0.2664$	$-12 \le h \le 12$, $-10 \le k \le 11$, $-10 \le k \le 10$, $-10 \le k \le 10$, $-10 \le k \le 10$, $-22 \le 1 \le 22$ $-21 \le 12$, $-20 \le 1 \le 22$ $-22 \le 1 \le 20$ $10400 / 3168$ $8874 / 2886$ $8983 / 2922$ $9116 / 2957$ 1.103 1.073 1.088 1.102 $0.0560, 0.1437$ $0.0688, 0.1916$ $0.0824, 0.2368$ $0.0889, 0.2759$ $0.0702, 0.1604$ $0.0879, 0.2137$ $0.1060, 0.2664$ $0.1167, 0.3091$

Table 2. Atomic coordinates and equivalent isotropic displacement parameters $(Å^2 \times 10^3)$ for N-IPBADC at 293K. U(eq) is defined as one third of the trace of the orthogonalized U_{ij} tensor.

	Х	У		Z	U(eq)		
Cl(2)	1260(1)	3362(1)	102(1) 78(1))		
Cl(1)	1899(1)	113(1)	-73(1)) 77(1))		
N(1)	-4473(2)	2413(2)	-1970	(1) 41(1))		
O(2)	3734(2)	3144(2)	1472((1) 69(1))		
C(12)	3376(2)	1827(3)	1230((1) 46(1))		
O(1)	4023(2)	615(2)	1467((1) 72(1))		
C(6)	-2254(2)	2383(3)	-2404	(1) 45(1))		
C(7)	-3146(3)	3285(3)	-1972	57(1))		
C(11)	1902(3)	1633(3)	615(1) 51(1))		
C(1)	-1107(3)	1509(3)	-1977	54(1))		
C(8)	-5420(3)	3203(3)	-1531	(2) 53(1))		
C(2)	-280(3)	685(3)	-2364	(2) 65(1))		
C(5)	-2553(3)	2422(3)	-3227	(2) 57(1))		
C(10)	-6817(3)	2324(4)	-1711	(2) 74(1))		
C(3)	-578(3)	732(4)	-3178	67(1))		
C(4)	-1709(3)	1604(4)	-3612	67(1))		
C(9)	-4693(4)	3287(4)	-657(2) 83(1))		
Table 3. Selected bond lengths (Å) and angles (°) for N-IPBADC at 293K.							
Cl(2)-C(11)	1.753(3)	C(12)-O(1)	1.225(3)	C(1)-C(2)	1.374(4)		
Cl(1)-C(11)	1.767(3)	C(12)-C(11)	1.542(3)	C(8)-C(9)	1.492(4)		
N(1)-C(7)	1.489(3)	C(6)-C(1)	1.378(3)	C(8)-C(10)	1.506(4)		
N(1)-C(8)	1.506(3)	C(6)-C(5)	1.380(3)	C(2)-C(3)	1.365(4)		
O(2)-C(12)	1.222(3)	C(6)-C(7)	1.503(3)	C(5)-C(4)	1.381(4)		
C(3)-C(4)	1.371(4)						
C(7)-N(1)-C(8)	115.06(18)	O(2)-C(12)-O(1)	126.6(2)	O(2)-C(12)-C(11)	117.4(2)		
O(1)-C(12)-C(11)	115.8(2)	C(1)-C(6)-C(5)	118.8(2)	C(1)-C(6)-C(7)	120.1(2)		
C(5)-C(6)-C(7)	121.2(2)	N(1)-C(7)-C(6)	111.02(19)	C(12)-C(11)-Cl(2)	113.28(16)		

C(12)-C(11)-Cl(1)	112.22(17)	Cl(2)-C(11)-Cl(1)	110.09(14)	C(2)-C(1)-C(6)	120.6(2)
C(9)-C(8)-N(1)	110.7(2)	C(9)-C(8)-C(10)	112.6(2)	N(1)-C(8)-C(10)	108.0(2)
C(3)-C(2)-C(1)	120.3(2)	C(6)-C(5)-C(4)	120.4(2)	C(2)-C(3)-C(4)	119.9(3)
C(3)-C(4)-C(5)	120.1(3)				

Table 4. Equivalent isotropic displacement parameters $(Å^2 \times 10^3)$ for the chlorine of N-IPBADC at different temperatures. U(eq) is defined as one third of the trace of the orthogonalized U_{ij} tensor.

Atom	U(eq)				
	293 K	323 K	343 K	356 K	
Cl(1)	77(1)	92(1)	108(1)	129(1)	
Cl(2)	78(1)	93(1)	110(1)	126(1)	

Figure S1. The TG/DTA curves of N-IPBADC with heating rate 5 °C/min.

Figure S2. The SHG signals of N-IPBADC at room temperature with 1064 nm irritation.

Figure S3. The Curie-Weiss law fitting of the dielectric constants at a frequency of 100 KHz in the interval of phase transition.

Figure S4. PXRD patterns of N-IPBADC crystallized in various solvents.