Electronic Supplementary Information

Highly efficient warm white light emitting Eu²⁺ activated silicate host: Another fabulous work of mesoporous silica

5 Sakthivel Gandhi,^{*a,b*} Kavitha Thandavan,^{*b*} Bong-Joon Kwon,^{*a*} Hyun-Joo Woo,^{*a*} Chang Hae Kim,^{*c*} Soung Soo Yi,^{*d*} Jung Hyun Jeong,^{*e*} Dong-Soo Shin^{*f*} and Kiwan Jang^{**a*}

Physical	Materials			
Properties	MPS	Silica (SiO ₂)		
Surface are (m^2/g)	750	~150		
Pore size (nm)	7	-		
Pore volume (cm ³ /g)	1.12	_		
Size (µm)	1–5	100-150		
Features	Rod like morphology	Non-uniform		
	along with highly ordered porous structure.	morphology with dis- ordered porous system.		

10 Table S1. A comparative study on the physical properties of MPS and conventional silicate source (SiO₂).

Properties _		Materials							
		YAG:Ce		Conventional SiO ₂ assisted SrCaSiO ₄ : Eu ²⁺	MPS assisted Sr _{0.975} Ca _{0.975} Eu _{0.05} SiO ₄				
						LED (400 nm)	LED (450 nm)		
CIE	X	0.35	0.28	0.22	0.50	0.42	0.44		
	у	0.62	0.30	0.49	0.48	0.39	0.40		
CCT (K)		-	8900	-	-	3350	3100		
CRI		-	< 75	-	-	81	80		
QE (%)		85	-	45	72	-	-		
Dopant concentration (mol%)		1	1	0.5	0.5	0.5	0.5		
Emission range (nm)		475-675	475-675	450–525	450-700	450-725	500-750		
FWHN	M (nm)	~100	~100	70	150	160	140		
Emission peak (nm)		~540	~540	510	585	595	600		
Emission intensity compared		1	-	0.3	1.1		-		
to YA	G:Ce								

Table S2. A comparative study on the phosphor properties among the materials namely YAG:Ce, Conventional SiO₂ assisted SrCaSiO₄: Eu^{2+} & MPS assisted Sr_{0.975}Ca_{0.975}Eu_{0.05}SiO₄ phosphors.

5 Figure S1.Powder XRD (a), FE-TEM (b), Nitrogen isotherm (c) & BJH isotherm (d) of MPS used for synthesizing Sr_{0.975}Ca_{0.975}Eu_{0.05}SiO₄ phosphor.

 $\label{eq:Figure S2} \textbf{Figure S2}. Elemental analysis of MPS assisted $$ Sr_{0.975}Ca_{0.975}Eu_{0.05}SiO_4$ phosphor analyzed using TEM-EDS. $$$

Figure S3.Concentration dependant luminescence of MPS assisted Sr_{0.975}Ca_{0.975}Eu_{0.05}SiO₄ phosphor (0.0025 to 0.1).

Figure S4.(A) Excitation spectra of YAG:Ce measured at 550 nm of emission. (B) Normalized luminescence emission spectra of SiO₂ assisted SrCaSiO₄:Eu²⁺ (a), YAG:Ce (b) and MPS assisted Sr_{0.975}Ca_{0.975}Eu_{0.05}SiO₄ (c) phosphors acquired under 370, 460 & 375 nm, respectively. It can also be noted that our Sr_{0.975}Ca_{0.975}Eu_{0.05}SiO₄ phosphor shows the enhanced orange-red emission when compared to YAG:Ce.

Figure S5. The Gaussian fit of MPS assisted $Sr_{0.975}Ca_{0.975}Eu_{0.05}SiO_4\, phosphor's emission.$

Figure S6. Emission behavior of MPS assisted $Sr_{0.975}Ca_{0.975}Eu_{0.05}SiO_4$ phosphor under different excitation wavelengths 380 (a), 400 (b) & 450 nm (c).