Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2014

## **Supporting Information**

## for

## Fluorine-free Blue Phosphorescent Emitters for Efficient Phosphorescent Organic Light Emitting Diodes

Jieun Lee,<sup>a</sup> Hankook Oh,<sup>a</sup> Jinho Kim,<sup>a</sup> Ki-Min Park,<sup>b</sup> Kyoung Soo Yook,<sup>c</sup> Jun Yeob Lee<sup>c</sup> and Youngjin Kang<sup>a,\*</sup>

<sup>a</sup>Division of Science education & Department of Chemistry, Kangwon National University, C huncheon 200-701, Republic of Korea

<sup>b</sup>Department of Chemistry and Research Institute of Natural Science, Gyeongsang National University, Jinju 660-701, Korea <sup>c</sup>Department of Polymer Science & Engineering, Dankook University, Yongin, Gyeonggi-do 448-701, Republic of Korea,

Corresponding Authors: Youngjin kang(kangy@kangwon.ac.kr)

## Contents

- Figure S1. <sup>1</sup>H NMR of 2,5-dimethoxypyridine-3-boronic acid. in CDCl<sub>3</sub>.
- Figure S2. <sup>1</sup>H NMR of 2',6'-dimethoxy-4-methyl-2,3'-bipyridine in CDCl<sub>3</sub>...
- **Figure S3**. <sup>1</sup>H NMR of **1** in CDCl<sub>3</sub>.
- **Figure S4**. <sup>13</sup>C NMR of **1** in CDCl<sub>3</sub>.
- **Figure S5**. <sup>1</sup>H NMR of **2** in CDCl<sub>3</sub>.
- **Figure S6**. <sup>13</sup>C NMR of **2** in CDCl<sub>3</sub>.
- Figure S7. TGA curves of 1 and 2..
- Figure S8. Oxidation potentials of 1, 2 and Firpic.
- Table S1. Crystal Data and Structure Refinement for 1 and 2.
- Table S2. Selected bond lengths (Å) and bond angles (°) for 1.
- Table S3. Selected bond lengths (Å) and bond angles (°) for 2.
- Table S4. Intermolecular C-H…O Hydrogen Bonds for 1 and 2 [Å and °].
- **Table S5.** Intermolecular C-H··· $\pi$  for **1** [Å and °]. *Cg*1, and *Cg*2 are the centroids of the N1/C6-C10, and N2/C1-C5 pyridine rings, respectively.
- Table S6. Intermolecular C-H…π for 2 [Å and °]. Cg1, Cg2, Cg3, Cg4, Cg5, Cg6, and Cg7 are the centroids of the N2/C6-C10, N3/C14-C16, N5/C27-C31, N6/C33-C37, N7/C38-C42, N9/C51-C55, and N10/C59-C63 pyridine rings, respectively.



Figure S1. <sup>1</sup>H NMR of 2,5-dimethoxypyridine-3-boronic acid. in CDCl<sub>3</sub>.



Figure S2. <sup>1</sup>H NMR of 2',6'-dimethoxy-4-methyl-2,3'-bipyridine in CDCl<sub>3</sub>.



Figure S3. <sup>1</sup>H NMR of 1 in CDCl<sub>3</sub>.



Figure S4. <sup>13</sup>C NMR of 1 in CDCl<sub>3</sub>.



Figure S5. <sup>1</sup>H NMR of 2 in CDCl<sub>3</sub>.



Figure S6. <sup>13</sup>C NMR of 2 in CDCl<sub>3</sub>.



Figure S7. TGA curves of 1 and 2.



Figure S8. Oxidation potentials of 1, 2 and Firpic.

| Identification code                        | 1                              | 2                              |
|--------------------------------------------|--------------------------------|--------------------------------|
| Empirical formula                          | $C_{31}H_{33}IrN_4O_6$         | $C_{36}H_{38}IrN_5O_8$         |
| Formula weight                             | 749.81                         | 860.91                         |
| Temperature (K)                            | 173(2)                         | 173(2)                         |
| Wavelength (Å)                             | 0.71073                        | 0.71073                        |
| Crystal system                             | Orthorhombic                   | Triclinic                      |
| Space group                                | Aba2                           | <i>P</i> -1                    |
| a (Å)                                      | 15.1324(5)                     | 14.8259(15)                    |
| <i>b</i> (Å)                               | 19.6891(7)                     | 15.4270(15)                    |
| <i>c</i> (Å)                               | 9.9117(3)                      | 16.4898(16)                    |
| α (°)                                      | 90                             | 87.206(5)                      |
| $\beta(^{\circ})$                          | 90                             | 77.253(4)                      |
| γ(°)                                       | 90                             | 71.403(4)                      |
| Volume (Å <sup>3</sup> )                   | 2953.12(17)                    | 3485.6(6)                      |
| Ζ                                          | 4                              | 4                              |
| Density (calculated) (Mg/m <sup>3</sup> )  | 1.686                          | 1.641                          |
| Absorption coefficient (mm <sup>-1</sup> ) | 4.571                          | 3.890                          |
| F(000)                                     | 1488                           | 1720                           |
| Crystal size (mm <sup>3</sup> )            | $0.10 \times 0.20 \times 0.32$ | $0.06 \times 0.10 \times 0.15$ |
| Theta range for data collection            | 2.07 to 28.37°                 | 0.86 to 27.00°                 |
| Index ranges                               | -19<= <i>h</i> <=20            | -16<=h<=18                     |
|                                            | -18<=k<=26                     | -19<=k<=19                     |
|                                            | -13<=l<=12                     | -21<= <i>l</i> <=21            |

 Table S1. Crystal Data and Structure Refinement for 1 and 2.

| Reflections collected                   | 14188                              | 60581                            |  |
|-----------------------------------------|------------------------------------|----------------------------------|--|
| Independent reflections                 | 3636 [ <i>R</i> (int) = 0.0422]    | 15098 [ <i>R</i> (int) = 0.0438] |  |
| Completeness to theta = $26.00^{\circ}$ | 99.8 %                             | 99.3 %                           |  |
| Absorption correction                   | Semi-empirical from equivalents    |                                  |  |
| Max. and min. transmission              | 0.6578 and 0.3225                  | 0.8001 and 0.5930                |  |
| Refinement method                       | Full-matrix least-squares on $F^2$ |                                  |  |
| Data / restraints / parameters          | 3636 / 1 / 191                     | 15098 / 0 / 901                  |  |
| Goodness-of-fit on $F^2$                | 1.055                              | 1.007                            |  |
| Final R indices $[I \ge 2\sigma(I)]$    | $R_1 = 0.0203, wR_2 = 0.0504$      | $R_1 = 0.0327, wR_2 = 0.0651$    |  |
| R indices (all data)                    | $R_1 = 0.0278, wR_2 = 0.0547$      | $R_1 = 0.0515, wR_2 = 0.0728$    |  |
| Largest diff. peak and hole (e.Å-3)     | 0.940 and -0.359                   | 1.536 and -1.144                 |  |

Table S2. Selected bond lengths (Å) and bond angles (°) for 1.

| Ir1-C1                 | 1.981(4)   | Ir1-N1                 | 2.035(2)   |
|------------------------|------------|------------------------|------------|
| Ir1-O3                 | 2.125(3)   |                        |            |
|                        |            |                        |            |
| C1-Ir1-C1 <sup>i</sup> | 92.8(2)    | C1-Ir1-N1              | 80.78(13)  |
| C1-Ir1-O3              | 89.27(10)  | C1-Ir1-O3 <sup>i</sup> | 175.90(14) |
| N1-Ir1-C1 <sup>i</sup> | 94.25(13)  | N1-Ir1-O3              | 89.56(10)  |
| N1-Ir1-N1 <sup>i</sup> | 172.84(17) | N1-Ir1-O3 <sup>i</sup> | 95.56(10)  |
| O3-Ir1-O3 <sup>i</sup> | 88.86(14)  |                        |            |
|                        |            |                        |            |

Symmetry transformation used to generate equivalent atoms: i) -*x*, -*y*, *z*.

| Ir1-C10     | 1.978(4)   | Ir1-C23     | 1.989(4)   |
|-------------|------------|-------------|------------|
| Ir1-N1      | 2.036(3)   | Ir1-N3      | 2.040(3)   |
| Ir1-N5      | 2.142(3)   | Ir1-O5      | 2.148(3)   |
| Ir2-C42     | 2.001(4)   | Ir2-C55     | 1.995(4)   |
| Ir2-N6      | 2.047(3)   | Ir2-N8      | 2.026(3)   |
| Ir2-N10     | 2.139(3)   | Ir2-O11     | 2.159(3)   |
|             |            |             |            |
| C10-Ir1-C23 | 89.61(15)  | C10-Ir1-N1  | 80.30(14)  |
| C10-Ir1-N3  | 95.85(14)  | C10-Ir1-N5  | 98.22(14)  |
| C10-Ir1-O5  | 173.14(12) | C23-Ir1-N1  | 96.18(14)  |
| C23-Ir1-N3  | 80.50(14)  | C23-Ir1-N5  | 171.59(13) |
| C23-Ir1-O5  | 95.71(13)  | N1-Ir1-N3   | 174.99(12) |
| N1-Ir1-N5   | 88.21(12)  | N1-Ir1-O5   | 94.77(11)  |
| N3-Ir1-N5   | 95.56(12)  | N3-Ir1-O5   | 89.32(11)  |
| N5-Ir1-O5   | 76.74(11)  | C42-Ir2-C55 | 88.41(16)  |
| C42-Ir2-N6  | 80.21(15)  | C42-Ir2-N8  | 94.60(15)  |
| C42-Ir2-N10 | 173.50(14) | C42-Ir2-O11 | 96.73(13)  |
| C55-Ir2-N6  | 100.44(15) | C55-Ir2-N8  | 80.03(16)  |
| C55-Ir2-N10 | 97.95(14)  | C55-Ir2-O11 | 173.10(13) |
| N6-Ir2-N10  | 97.22(12)  | N6-Ir2-O11  | 85.02(12)  |
| N8-Ir2-N6   | 174.75(13) | N8-Ir2-N10  | 87.87(13)  |
| N8-Ir2-O11  | 94.92(12)  | N10-Ir2-O11 | 77.04(11)  |

Table S3. Selected bond lengths (Å) and bond angles (°) for 2.

| D-H···A                                                                                                 | d(D-H)             | d(H···A)          | $d(D \cdots A)$                                | <(DHA) |
|---------------------------------------------------------------------------------------------------------|--------------------|-------------------|------------------------------------------------|--------|
| Complex 1                                                                                               |                    |                   |                                                |        |
| C12-H12A…O3 <sup>i</sup>                                                                                | 0.98               | 2.59              | 3.395(5)                                       | 140.0  |
| [Symmetry transformation                                                                                | s used to generate | e equivalent atom | s: i) - <i>x</i> , - <i>y</i> +1/2, <i>z</i> - | +1/2.] |
|                                                                                                         |                    |                   |                                                |        |
| Complex 2                                                                                               |                    |                   |                                                |        |
| C2-H2…O12                                                                                               | 0.95               | 2.41              | 3.266(5)                                       | 150.6  |
| $C46\text{-}H46\cdots O12^{\mathrm{i}}$                                                                 | 0.95               | 2.56              | 3.133(5)                                       | 118.7  |
| C61-H61…O2 <sup>ii</sup>                                                                                | 0.95               | 2.44              | 3.291(5)                                       | 148.9  |
| C65-H65C···O6 <sup>iii</sup>                                                                            | 0.98               | 2.37              | 3.270(7)                                       | 151.9  |
| C67-H67BO10 <sup>iv</sup>                                                                               | 0.99               | 2.43              | 3.253(7)                                       | 139.6  |
| С69-Н69В…О13 <sup>v</sup>                                                                               | 0.98               | 2.45              | 3.329(9)                                       | 149.2  |
| [Symmetry transformations used to generate equivalent atoms: i) $-x+1$ , $-v$ , $-z+1$ ; ii) x, v-1, z. |                    |                   |                                                |        |

Table S4. Intermolecular C-H···O Hydrogen Bonds for 1 and 2 [Å and °]

.

[Symmetry transformations used to generate equivalent atoms: i) -x+1, -y, -z+1; ii) x, y-1, z; iii) x, y+1, z; iv) -x+1, -y+1, -z; v) x-1, y, z.]

**Table S5.** Intermolecular C-H··· $\pi$  for **1** [Å and °]. *Cg*1, and *Cg*2 are the centroids of the N1/C6-C10, and N2/C1-C5 pyridine rings, respectively.

| D-H···A                            | d(D-H) | d(H···A) | $d(D \cdots A)$ | <(DHA) |
|------------------------------------|--------|----------|-----------------|--------|
| C11-H11A $\cdots$ Cg2 <sup>i</sup> | 0.98   | 3.23     | 4.07(5)         | 145    |
| C12-H12B····Cg1 <sup>ii</sup>      | 0.98   | 3.32     | 3.90(4)         | 119    |

Symmetry transformations used to generate equivalent atoms: i) -x+1/2, y, z+1/2;

ii) -*x*, -*y*+1/2, *z*+1/2.

| D-H···A                              | d(D-H) | $d(H \cdots A)$ | $d(D \cdots A)$ | <(DHA) |
|--------------------------------------|--------|-----------------|-----------------|--------|
| C11-H11ACg7 <sup>i</sup>             | 0.98   | 3.13            | 3.66(4)         | 115    |
| C11-H11BCg1 <sup>ii</sup>            | 0.98   | 2.99            | 3.82(5)         | 143    |
| C13-H13B… <i>Cg</i> 5 <sup>ii</sup>  | 0.98   | 2.96            | 3.64(5)         | 127    |
| C24-H24A····Cg4 <sup>iii</sup>       | 0.98   | 3.25            | 3.89(5)         | 124    |
| C25-H25BCg6 <sup>iv</sup>            | 0.98   | 3.18            | 4.08(5)         | 153    |
| C28-H28···· <i>Cg</i> 5 <sup>v</sup> | 0.95   | 2.67            | 3.56(5)         | 156    |
| C45-H45B $\cdots$ Cg1 <sup>vi</sup>  | 0.98   | 3.04            | 3.77(5)         | 132    |
| C56-H56A <i>Cg</i> 3 <sup>i</sup>    | 0.98   | 3.13            | 3.77(4)         | 124    |
| C69-H69A $\cdots$ Cg2 <sup>vi</sup>  | 0.98   | 3.26            | 4.11(5)         | 146    |
| C72-H72B… <i>Cg</i> 2 <sup>iii</sup> | 0.98   | 3.11            | 3.92(4)         | 141    |

**Table S6.** Intermolecular C-H $\cdots\pi$  for **2** [Å and °]. *Cg*1, *Cg*2, *Cg*3, *Cg*4, *Cg*5, *Cg*6, and *Cg*7 are the centroids of the N2/C6-C10, N3/C14-C16, N5/C27-C31, N6/C33-C37, N7/C38-C42, N9/C51-C55, and N10/C59-C63 pyridine rings, respectively.

Symmetry transformations used to generate equivalent atoms: i) -x+1, -y, -z+1; ii) -x+1, -y+1, -z+1; iii) -x+1, -z+1; iii) -x+1; iii) -x+1, -z+1; iii) -x+1; ii