Electronic Supplementary Information for

The 2-Phenylbenzimidazole-5-sulfonate /layered double hydroxides cointercalation composites and its luminescence response for nucleotides

Shufang Zheng, Jun Lu *, Wu Li, Yumei Qin, Dongpeng Yan, David G Evans, and Xue Duan

State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China.

List of contents

1. Structural characterization of PBS(15 %)–DES /LDH composites

Fig. S1. XRD patterns of PBS(15%)-DES/LDH thin film

2.Optical properties of PBS solutions and PBS(15%)-DES/LDH thin film

Fig. S2. The fluorescence spectra of the PBS solutions (a-10⁻² M, b-10⁻³ M,c-10⁻⁴ M,d-10⁻⁵ M)

Fig. S3 Optical photographs of the thin film under 254 nm UV irradiation all the solution is 10^{-4} M nucleotides under physiological conditions(10 mM HEPES, pH = 7.4)

 Table S1. Fluorescence lifetimes of PBS(15%)-DES/LDH thin film with 300 nm excitation

Fig. S4. The fluorescence spectra of PBS(15%)-DES/LDH thin film in the mixture solution of AXP (10^{-4} M) under physiological conditions (10mM HEPES, pH = 7.4)

Fig. S5. Fluorescence response recycles of PBS(15%)-DES/LDH thin film to ATP soultion (10^{-4} M) under physiological conditions(10 mM HEPES, pH = 7.4)

Fig. S6. The fluorescence spectra of PBS(15%)-DES/LDH thin film with nucleotides(10^{-4} M) under physiological conditions(10mM HEPES, pH = 7.4)

Fig. S7.The fluorescence spectra of PBS(10^{-4} M) and nucleotides(10^{-4} M) mixture solution under physiological conditions(10 mM HEPES, pH = 7.4)

Fig. S8. The fluorescence spectra of PBS/LDH and ATP@PBS/LDH under physiological conditions(10 mM HEPES, pH = 7.4)

Table S2. The I_{342}/I_{402} ratio of PBS(15%)-DES/LDH thin film for sensing the nucleotides solution (10⁻⁴M)

1. Structural characterization of PBS(15%)- DES/LDH composites

As is shown in Figure S1, the XRD patterns of PBS(15%)-DES/LDH thin film appears

strong (00 l) diffraction peak compared with solid powder, the lack of benchmark diffraction

peak (110) (h, $k \neq 0$) presents good c axis orientation, that is the ab plane of the LDH particles

is paralleled to the basement^[1].

Fig. S1. XRD patterns of PBS(15%)-DES/LDH thin film

2.Optical properties of PBS solutions and PBS(15%)–DES/LDH thin film

Fig. S2 The fluorescence spectra of the PBS solutions $(a-10^{-2}M, b-10^{-3}M, c-10^{-4}M, d-10^{-5}M)$

Fig. S3 Optical photographs of the thin film under 254 nm UV irradiation. all the solution is 10^{-4} M nucleotides under physiological conditions(10 mM HEPES, pH = 7.4)

PBS(15%)-DES/LDH thin film	Emission peak	<\au_i>(ns)^a	A _i (%)	< \tau>(ns)	χ^{2} b
	0.503 86.12	0.711	1 107		
	342 mm	2.004	13.88	0.711	1.10/
In dry air	402	0.932	58.87	2 402	1 412
	402 nm	6.941	41.13	5.405	1.413
	242	1.203	59.49	1.452	1.133
In ATD solution	342 nm	1.817	40.51		
In ATP solution	402	1.369	86.77	1 700	1 1 2 5
	402 nm	3.867	13.23	1.700	1.133

Table S1. Fluorescence lifetimes of PBS(15%)-DES/LDH thin film with 300 nm excitation

^a τ_i (i = 1, 2, 3) is the fitted fluorescence lifetime. A_i is the percentage of τ_i in the double-exponential case, $\langle \tau \rangle = A_1 \tau_1 + A_2 \tau_2 + A_3 \tau_3$; $A_1 + A_2 + A_3 = 1$.) ^b The goodness-of-fit is indicated by the value of $\chi 2$.

Fig. S4. The fluorescence spectra of PBS(15%)-DES/LDH thin film in the mixture solution of AXP (10^{-4} M) under physiological conditions (10mM HEPES, pH = 7.4)

Fig. S5. Fluorescence response recycles of PBS(15%)-DES/LDH thin film to ATP soultion (10^{-4} M) under physiological conditions(10 mM HEPES, pH = 7.4)

Fig. S6. The fluorescence spectra of PBS(15%)-DES/LDH thin film with nucleotides(10^{-4} M) under physiological conditions(10mM HEPES, pH = 7.4)

nucleotides	I_{402}	I_{342}	I_{342}/I_{402}
UTP	UTP 245		10.12
UDP	307	1540	5.02
UMP	329	197	0.60
СТР	386	2784	7.21
CDP	667	523	0.78
СМР	337	140	0.42
GTP	367	1202	3.76
GDP	374	766	2.05
GMP	291	374	1.28

3000 3000 PBS 2500 2500 PBS ATP СТР ADP CDP 2000 2000 AMP Intensity 1200 СМР Intensity 1200 1000 1000 500 500 ₀∟ 320 0 320 400 440 Wavelength / nm 360 480 400 440 360 480 Wavelength / nm 2500 2500 PBS PBS UTP 2000 GTP 2000 UDP GDP Intensity GMP Intensity 1200 UMP 1000 1000 500 500 0 320 0 320 400 44 Wavelength / nm 480 360 440 400 360 440 480 Wavelength / nm

Fig. S7.The fluorescence spectra of PBS (10^{-4} M) and nucleotides (10^{-4} M) mixture solution under physiological conditions (10 mM HEPES, pH = 7.4)

Fig. S8. The fluorescence spectra of PBS/LDH and ATP@PBS/LDH under physiological conditions(10 mM HEPES, pH = 7.4)

Reference

[1] Gursky J A, Blough S D, Luna C, Gomez C, Luevano A N, Gardner E A. Particle-particle interactions between layered double hydroxide nanoparticles. *J. Am. Chem. Soc.*, 2006, **128**, 8376.