DFT Magnetic Characterization of a Fe_4 SMMs Series: From Isotropic Exchange Interactions to Multi-Spin Zero Field Splitting.

Supplementary Information Materials

Isotropic Exchange Coupling Constants

From Table 1, it is evident that the differences among the computed three J_1 values are small and this results support their supposed experimental equivalence by symmetry. Moreover, it comes also out that calculations suggest as more appropriate axial C_2 symmetry than a C_3 one.

1

5

Table 1 Calculated PBE0 Exchange Coupling Constants J_1

	$\rm Fe_4OMe$	${\rm Fe_4tBu}$	$\mathrm{Fe}_4\mathrm{Ph}$	${\rm Fe_4Me}$	$\rm Fe_4C5$	$\rm Fe_4C4$	$\rm Fe_4C3$	$\rm Fe_4C1$
J_1'	23.53 cm^{-1}	22.05 cm^{-1}	13.28 cm^{-1}	$16.60 \ {\rm cm}^{-1}$	$17.39 \ {\rm cm}^{-1}$	15.44 cm^{-1}	$13.17 \ {\rm cm}^{-1}$	$11.58 \ {\rm cm}^{-1}$
$J_1^{\prime\prime}$	23.31 cm^{-1}	22.04 cm^{-1}	12.97 cm^{-1}	$16.41 \ {\rm cm}^{-1}$	$15.25 \ {\rm cm}^{-1}$	$11.60 \ {\rm cm}^{-1}$	$10.68 \ {\rm cm}^{-1}$	$12.20 \ {\rm cm}^{-1}$
$J_1^{\prime\prime\prime}$	23.25 cm^{-1}	22.04 cm^{-1}	13.06 cm^{-1}	16.39 cm^{-1}	15.25 cm^{-1}	10.85 cm^{-1}	$9.40 \ {\rm cm}^{-1}$	13.47 cm^{-1}

PBE v.s. PBE0 Single Ion Anisotropy Tensors for Fe₄Ph

	Da				$\rm E/D^a$	XC functional	
	Fe_{c}	Fe_p ^b	$\mathrm{Fe}_{p'}$ ^b	Fe_c	$\mathrm{Fe}_{p}^{\mathrm{b}}$	$\mathrm{Fe}_{p'}$ ^b	
$\rm Fe_4Ph$	-0.307	0.841	0.841	~ 0	0.062	0.080	PBE
$\rm Fe_4Ph$	0.225	-0.242	0.152	0.320	0.319	0.254	PBE0

Table 2 Calculated Single Ion Anisotropy Tensors and their orientations.

^a Values expressed in cm^{-1} ;

^b Fe_p refers to the peripheral Iron laying on the C_2 and Fe_{p'} refers to Irons which do not;