Supporting Information

A Rational Design of Carbazole-Based Host Materials With Suitable Spacer Group Towards Highly-Efficient Blue Phosphorescence

Xiao-Dong Yuan^a, Jian Liang^a, Yun-Chu He^a, Qian Li^a, Cheng Zhong^b, Zuo-Quan Jiang^{*a} and Liang-Sheng Liao^{*a}

^a Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM) & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123, China.

^b Department of Chemistry, Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, Wuhan University, Wuhan 430072, China.

Email: zqjiang@suda.edu.cn; lsliao@suda.edu.cn; Fax: +86-512- 6588-2846; Tel: +86-512- 6588-0945

CV curves of TMCz and DMCz:

Fig. S1 Cyclic voltammograms of DMCz and TMCz in dichloromethane solution for oxidation.

TGA curves of DMCz and TMCz:

Fig. S2 TGA curves of DMCz and TMCz.

¹H NMR and ¹³C NMR of TMCz and DMCz:

Fig. S3 400 MHz ¹H NMR spectrum of TMCz in CDCl₃.

Fig. S5 400 MHz ¹³C NMR spectrum of TMCz in CDCl₃.

Fig. S6 400 MHz 13 C NMR spectrum of DMCz in CDCl₃.

Fig. S7 Energy level diagrams of X M materials. The density functional theory (DFT) calculations were performed using the TD-DFT/B3LYP/6-31G(d) method with Gaussian 09 package. X = 0, 1, 2, 3, 4, represents the amount of methyl group in the center phenyl group.

-								
Host: DMCz	V ^a [V]	${nllllllllllllllllllllllllllllllllllll$		$\mathcal{Y}^{\mathrm{b}_{\mathrm{ce}}}[\mathrm{lm}\ \mathrm{W}^{\mathrm{-1}}]$		$\mathcal{Y}^{ extsf{b}}_{ extsf{ext}}$ [%]		CIEc
1 ^d	3.77	43.10	42.17	36.71	27.57	19.36	17 32	0.16,
							17.52	0.39
2^d	3.95	44.30	43.56	35.23	27.40	17.66	17.93	0.16,
								0.39
Average	3.86	43.7	42.86	35.97	27.48	18.51	17.62	0.16,
								0.39

Table S1. Electroluminescence characteristics of the devices using DMCz as the host.

^a Voltages at 100 cd m⁻². ^b Efficiencies in the order of the maxima and at 1000 cd m⁻². ^c Commission International de l'Eclairage coordinates measured at 5 mA cm⁻². ^d Two devices with the same structure as mentioned in the discussion section.

Table S2. Electroluminescence characteristics of the devices using TMCz as the host.

Host: TMCz	Va [V]	$\mathcal{Y}^{b_{ce}}[cd\;A^{-1}]$		$\mathcal{Y}^{\mathrm{b}_{\mathrm{ce}}}[\mathrm{lm}\ \mathrm{W}^{\mathrm{-1}}]$		${\cal Y}^{ m b}_{ m ext}$ [%]		CIE¢
1 ^d	4.46	39.10	37.88	26.13	20.75	16.08	15.55	0.15, 0.37
2 ^d	4.49	32.70	32.55	23.98	17.67	13.37	13.35	0.16, 0.39
Average	4.48	35.9	35.22	25.06	19.21	14.72	14.45	0.16, 0.38

^a Voltages at 100 cd m⁻². ^b Efficiencies in the order of the maxima and at 1000 cd m⁻². ^c Commission International de l'Eclairage coordinates measured at 5 mA cm⁻². ^d Two devices with the same structure as mentioned in the discussion section.

Table S3. Electroluminescence characteristics of the devices using mCP as the host.

Host:	V ^a [V]	$\boldsymbol{\mathcal{H}}^{b}$ [cd \mathbf{A}^{-1}]		n^{b} [lm W ⁻¹]		10 b [%]		CIEc
mCP		J ce L	unj	<i>y</i> ce [III w]		<i>y</i> ext [/0]		
1 ^d	4.55	34.50	32.14	23.18	17.18	15.43	15.02	0.17, 0.38
							15.05	0.38
2 ^d	4.36	37.60	37.01	25.69	17.60	13.67	13.25	0.16,
								0.38
Average	4.46	36.05	34.58	24.44	17.39	14.55	1414	0.16,
							14.14	0.38

^a Voltages at 100 cd m⁻². ^b Efficiencies in the order of the maxima and at 1000 cd m⁻². ^c Commission International de l'Eclairage coordinates measured at 5 mA cm⁻². ^d Two devices with the same structure as mentioned in the discussion section.