Supporting Information

Amino-decorated lanthanide (III) – organic extended frameworks for multi-color luminescence and fluorescence sensing

Ji-Na Hao, Bing Yan*

Figure S1 IR spectra of Ln-MOF.

Figure S2 Thermal gravimetric analysis of Eu-MOF.

Figure S3 Excitation and emission spectra of pure ligand NH₂-BDC

Figure S4 The emission spectra of Sm-MOF monitored at different excitation wavelength. With excitation wavelength varying from 300 to 400 nm, the relative emission intensity of the ligand and Sm-luminescence is different, thus leading to the different values of CIE(x,y).

Figrue S5 Emission spectra of Sm-MOF plotted on a CIE diagram with excitation wavelengths varying from 300 (A) to 400 nm (B \sim F, step size 20 nm) showing tunable chromaticity of visual emission image.

Figure S6 Excitation and emission spectra of Dy-MOF, and its blue luminescence color with the UV excitation using a Xe lamp as the excitation source.

materials	λ_{ex} / λ_{em} (nm)	τ (μs)	η (%)	CIE(x,y)
Eu-MOF	333/614	717	3.8	(0.64, 0.3382)
Tb-MOF	380/545	20	1.0	(0.316, 0.5007)
Sm-MOF	300/644	14	0.6	(0.3748, 0.2285)
Dy-MOF	350/575	13	0.8	(0.1607, 0.1133)

Table S1 The luminescence data of Ln-MOF

 τ , lifetime; η , the emission quantum efficiency.

Figure S7 CIE chromaticity diagram of Ln-MOF. The values of CIE(x, y) were listed at Table S1.

Figure S8 Response of lifetime of Eu-MOF towards DMF solution of various metal cations, the inset shows the lifetime of Eu-MOF in the presence of $A1^{3+}$.

Figrue S9 The pictures of Eu-MOF in DMF in the presence of different concentrations of Al^{3+} . With the Al^{3+} concentrations increasing, the solutions changed from turbid to clear solution.

Scheme S1 Schematic illustration of the luminescence quenching mechanism of Eu-MOF by metal ions (Mechanism 1 for $M^{z+} = Li^+$, Mn^{2+} , Zn^{2+} , Cd^{2+} , Ni^{2+} and Cu^{2+} ions; Mechanism 2 for Al³⁺ and Fe²⁺/Fe³⁺).