Electronic Supplementary Information (ESI)

Tetraphenylethene-Decorated Carbazoles: Synthesis, Aggregation-Induced Emission, Photo-Oxidation and

Electroluminescence

Wen-Liang Gong, Bo Wang, Matthew. P. Aldred,* Chong Li, Guo-Feng Zhang, Tao Chen, Lei Wang and Ming-Qiang Zhu*

Content

- 1. Experimental methods
- 2. Optical properties
- 3. Measurements of the film thickness
- 4. DLS measurement
- 5. ¹H and ¹³C NMR
- 6. Mass spectra

1. Experimental methods

All commercially available starting materials, reagents and solvents were used as supplied, unless otherwise stated, and were purchased from Aladdin, Acros Organics and PuyangHuicheng Chemical Co. Ltd. All reactions were carried out under a dry nitrogen atmosphere unless water was used as a solvent or reagent and the temperatures were measured externally. Benzene was dried over CaH₂ with stirring overnight followed by distillation under reduced pressure. Reported yields are isolated yields. Purification of most intermediates and all final products was accomplished in most cases by gravity column chromatography, using silica gel. For qualitative purity tests of all intermediates and final products, a single spot (visualised using UV-light at 254 nm and 365 nm) was obtained. Elemental analysis was used for quantitative purity checks of all final products. ¹H NMR spectra are reported in parts per million (ppm) relative to tetramethylsilane as an internal standard.

UV-VIS: Shimadzu UV-VIS-NIR Spectrophotometer (UV-3600)

PL: Edinburgh instruments (FLS 920 spectrometers)

¹HNMR: (Bruker AV600).

Mass Spectrometry: Agilent (1100 LC/MSD Trap),

Elemental Analysis: Elementar (Vario Micro-cube).

Stylus profiler: Bruker Dektakxt

2. Optical properties

Figure S1 UV-vis absorption spectra and PL spectra of Cz-TPEs and DPA in PMMA thin films.

Figure S2 Fluorescence lifetime of Cz-TPEs in pure thin films.

3. Measurements of the film thickness

The thickness of the films used for photo-oxidation and electroluminescence devices are calculated by a stylus profiler (Bruker Dektakxt).

Figure S3 The screen shot picture of film (Cz-1TPE) used in photo-oxidation experiments, the value is 407.34A, which is about 40nm thickness

Figure S4 The screen shot picture of film used in OLED devices, the value is 473.96A, which is about 47nm thickness

4. DLS measurement

Figure S5 DLS data of Cz-TPEs in f_w = 90%, concentration equals 10-5mol/L(A) Cz-1TPE, (B) Cz-2TPE,(C) Cz-3TPE,(D) Cz-4TPE and (E) Cz-2TPE (2, 7); DLS calculated Nanoparticle size of Cz-TPEs in f_w = 90% with concentration [M] = 10⁻⁵mol L⁻¹

Sample name	Cz-1TPE	Cz-2TPE(3,6)	Cz-2TPE(2,7)	Cz-3TPE	Cz-4TPE
Size(nm)	125.4	127.5	115	136.6	144.1

5. ¹H and ¹³C NMR

¹H-NMR spectra of Cz-TPEs in CDCl₃

Figure S6¹⁻H-NMR Spectra of Cz-1TPE in CDCl₃

Figure S7¹⁻H-NMR Spectra of Cz-2TPE (2, 7) in CDCl₃

Figure S8¹-H-NMR Spectra of Cz-2TPE (3, 6) in CDCl₃

Figure S9¹⁻H-NMR Spectra of Cz-3TPE in CDCl₃

Figure S10¹⁻H-NMR Spectra of Cz-4TPE in CDCl₃

Figure S11 ¹³⁻C-NMR Spectra of Cz-1TPE in CDCl₃

Figure S12 ¹³⁻C-NMR Spectra of Cz-2TPE in CDCl₃

Figure S13 ¹³-C-NMR Spectra of Cz-2TPE (2, 7) in CDCl₃

Figure S14 ¹³⁻C-NMR Spectra of Cz-3TPE in CDCl₃

Figure S15¹³⁻C-NMR Spectra of Cz-4TPE in CDCl₃

Figure S16 Overlap ¹-H NMR Spectra of Cz-1TPE in CDCl₃ before (red line) and after (blue line) UV light irradiation

Figure S17¹⁻H NMR Spectra of Cz-1TPE in CDCl₃ before (A) and after (B) UV light irradiation.

6. Mass spectra

Figure S18 Mass spectra of Cz-1TPE

Display Report - All Windows Selected Analysis

Figure S19 Mass spectrum of Cz-2TPE (3, 6)

Display Report - All Windows Selected Analysis

Figure S20 Mass spectrum of Cz-2TPE (2, 7)

Figure S21 Mass spectrum of Cz-3TPE

Display Report - All Windows Selected Analysis

Figure S22 Mass spectrum of Cz-4TPE