Electronic Supplementary Information (ESI)

Near-infrared broadly emissive AgInSe₂/ZnS quantum dots for biomedical optical imaging

Dawei Deng,*ab Lingzhi Qu,a and Yueqing Gu*a

- ^a School of Life Science and Technology, and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- ^b Chemical Engineering Department, University of Michigan, Ann Arbor, Michigan 48109, United States
- * Corresponding author. Fax: +86 25 83271046 E-mail: dengdawei@cpu.edu.cn or dengd@umich.edu (D. Deng), guyueqingsubmission@hotmail.com (Y. Gu)

Fig. S1 PL spectra of the dispersions prepared with different Ag/In/Se feed ratios, in which Se powder dissolved in the mixture of oleylamine (OLA) and 1-dodecanethiol (DDT) was used as Se source.

Fig. S2 Cell viability of human embryonic lung fibroblast (HELF) cells incubated with different concentrations of amphiphilic polymer-wrapped QDs ([QDs]=0, 0.01, 0.1, 1, 10, and 100 μ g/mL) for 48 h. Here, MTT assay was conducted to assess preliminarily the cytotoxicity of QDs. The OD was measured with a Microplate Reader (Biorad).

Fig. S3 (a) and (b) PL spectra of initial oil-soluble AlSe/ZnS QDs, amphiphilic polymer-wrapped QDs and RGD-modification amphiphilic polymer-QDs with various PL emission peaks.