**Supplementary Information** 

## Bright and stable light-emitting electrochemical cells based on an intramolecularly $\pi$ -stacked, 2-naphthyl-substituted iridium complex

Gabriel E. Schneider,<sup>a</sup> Antonio Pertegás,<sup>b</sup> Edwin C. Constable,<sup>a</sup> Catherine E. Housecroft,<sup>\*a</sup> Nik Hostettler,<sup>a</sup> Collin D. Morris,<sup>a</sup> Jennifer A. Zampese,<sup>a</sup> Henk J. Bolink,<sup>\*b</sup> José M. Junquera-Hernández,<sup>b</sup> Enrique Ortí<sup>b</sup> and Michele Sessolo<sup>b</sup>

<sup>a</sup> Department of Chemistry, University of Basel, Spitalstrasse 51, CH–4056 Basel, Switzerland. E-mail: catherine.housecroft@unibas.ch

<sup>b</sup> Instituto de Ciencia Molecular, Universidad de Valencia, ES–46980 Paterna (Valencia), Spain. E-mail:henk.bolink@uv.es



**Fig. S1.** Cyclic voltammogram of  $[Ir(ppy)_2(Naphbpy)][PF_6]$  measured in CH<sub>2</sub>Cl<sub>2</sub> solution (with respect to Fc/Fc<sup>+</sup>) showing the quasi-reversible oxidation and reduction, as well as the unidentified process at +0.33V. Scan-rate = 0.1 V s<sup>-1</sup>.

**Table S1.** Selected bond distances (in Å) and angles (in deg.) calculated for the  $[Ir(ppy)_2(Naphbpy)]^+$  complex in the singlet ground state (S<sub>0</sub>) and in the lowest-energy triplet states T<sub>1</sub> and T<sub>2</sub>. X-ray values are included for comparison.

|                        | Exp. <sup>b</sup> | $S_0^c$ | $T_1^d$ | $T_2^{d}$ |
|------------------------|-------------------|---------|---------|-----------|
| $Ir(1)-N(1)^a$         | 2.150(5)          | 2.208   | 2.226   | 2.209     |
| Ir(1)-N(2)             | 2.215(5)          | 2.356   | 2.249   | 2.346     |
| Ir(1)-N(3)             | 2.064(5)          | 2.093   | 2.089   | 2.097     |
| Ir(1)-N(4)             | 2.037(5)          | 2.077   | 2.073   | 2.077     |
| Ir(1)-C(21)            | 2.007(6)          | 2.013   | 2.017   | 2.015     |
| Ir(1)-C(32)            | 2.019(6)          | 2.028   | 1.980   | 2.026     |
| N(1)-Ir(1)-N(2)        | 75.60(18)         | 73.9    | 74.6    | 74.1      |
| C(21)-Ir(1)-N(3)       | 79.9(2)           | 80.1    | 80.0    | 80.1      |
| C(32)-Ir(1)-N(4)       | 80.4(2)           | 80.0    | 81.0    | 80.1      |
| N(1)-C(5)-C(6)-N(2)    | 14.4(7)           | 17.5    | 11.0    | 20.4      |
| C(21)-C(26)-C(27)-N(3) | 2.7(9)            | 1.5     | -0.1    | 1.3       |
| C(32)-C(37)-C(38)-N(4) | 1.0(8)            | -0.8    | 0.4     | 0.5       |
| N(2)-C(10)-C(11)-C(20) | 61.1(8)           | 57.5    | 64.2    | 45.9      |

<sup>*a*</sup> Atom numbering from Figure 1. <sup>*b*</sup> X-ray values. <sup>*c*</sup> DFT optimized structure. <sup>*d*</sup> TD-DFT optimized structure. All calculations performed at the B3LYP/(6-31G\*\*+LANL2DZ) level in the presence of the solvent (CH<sub>2</sub>Cl<sub>2</sub>).



**Fig. S2.** B3LYP/(6-31G\*\*+LANL2DZ)-optimized structure of the transition state connecting conformers 1 and 2 of the  $[Ir(ppy)_2(Naphbpy)]^+$  complex. The transition state presents only one imaginary frequency and the associated vibrational normal mode describes a movement leading to conformers 1 and 2.



**Fig. S3.** B3LYP/(6-31G\*\*+LANL2DZ)-optimized bond lengths (in Å) calculated for the pendant naphthyl group of the  $[Ir(ppy)_2(Naphbpy)]^+$  complex in the singlet ground state (S<sub>0</sub>, DFT optimization) and in the <sup>3</sup>LC T<sub>2</sub> triplet state (TD-DFT optimization).