Electronic Supporting Information

CrXTe₃ (X= Si, Ge) nanosheets: two dimensional intrinsic ferromagnetic semiconductors

Xingxing Li^a and Jinlong Yang*ab

^aHefei National Laboratory for Physical Science at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China.

^bSynergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China.

Fig. S1. Band structure for bulk (a) CrSiTe₃ and (b) CrGeTe₃ with PBE+U+VDW functional. Fermi levels are all set to zero.

Fig. S2. Band structure for (a) monolayer, (b) bilayer and (c) trilayer CrSiTe₃ nanosheets with PBE+U+VDW functional. (d), (e), (f) are for CrGeTe₃ nanosheets.

Fig. S3. Band structure for 2D (a) CrSiTe₃ and (b) CrGeTe₃ under 5% tensile strain calculated with HSE06 functional.

Fig. S4. (a) Optimized structure and (b) band structure for 2D MnSiTe₃ with HSE06 functional.

Fig. S5. (a) The spatial distribution of difference charge density defined as $\rho_{diff} = \rho_{CrSiTe_3} + TDAE - \rho_{CrSiTe_3} - \rho_{TDAE}$ plotted with an isovalue of 0.002e/Å³. Red and blue indicate positive and negative values, respectively. (b) The charge averaged along Z direction q (z) for the total charge (black line) and difference charge (green line) of TDAE-CrSiTe₃ adsorption system. The vertical dotted line shows a spatial partitioning of TDAE and CrSiTe₃, to which integration of difference charge q_{diff} (z) from z= 0 gives an amount of 0.38e.

Fig. S6. Density of states for 2D $CrSiTe_3$ adsorbed by (a) 1/3, (b) 1/4 and (c) 1/9 monolayer of TDAE molecules. Half-metallicity is robust under different adsorption concentrations.