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Experimental
General information

All reagents were purchased from Aldrich and were used without further purification. The
UV/vis and fluorescence spectra were recorded with Shimdzu UV-2450 spectrophotometer and
Shimadzu RF-5301(PC) spectrofluorophotometer, respectively. The SEM images were recorded
from Scanning Electron Microscope (SEM)-ZeissEV040. The time-resolved fluorescence spectra
were recorded with a HORIBA time-resolved fluorescence spectrometer. Elemental analysis (C,
H, N) was performed on a Flash EA 1112 CHNS-O analyzer (Thermo Electron Corp.). '"H NMR
were recorded on a JOEL-FT NMR-AL 300 MHz spectrophotometer using CDCl; as solvent
and tetramethylsilane SiMe, as internal standards. Data are reported as follows: chemical shifts
in ppm (8), multiplicity (s = singlet, d = doublet, br = broad singlet m = multiplet), coupling
constants J (Hz), integration, and interpretation. Silica gel 60 (60—-120 mesh) was used for

column chromatography.

Calculations for quantum yield':

Fluorescence quantum yield was determined using optically matching solutions of
diphenylanthracene (@ = 0.9 in cyclohexane) as standard at an excitation wavelength of 352 nm

and quantum yield is calculated using the equation:

1-10-AdLs N2 D,
X — X - X -
1-10-AsLs N2 D,

q)fs = q)fr

@ and Dy, are the radiative quantum yields of sample and the reference respectively, As and A,
are the absorbance of the sample and the reference respectively, Dy and D, the respective areas of
emission for sample and reference. Ls and L, are the lengths of the absorption cells of sample
and reference respectively. Ny and N, are the refractive indices of the sample and reference

solutions (pure solvents were assumed respectively).

! Demas, J. N.; Grosby, G. A. J. Phys. Chem. 1971, 75, 991-1024.
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Synthetic scheme of derivativeS-9
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Scheme 1. Pentacenequinone based derivatives 5-7.
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Scheme 2. Pentacenequinone based derivatives 8 and 9.

S4



Water Fraction (%)

1.8 90
1.6 -
70
o 141 50
e 12 4
e n Q 30
§ 1y W 10
8 08 1\ 0 —
S 0.6 Level-off tail
0.4 -
0.2 -
0 T T : —
300 350 400 450 500

Wavelength (nm)

Fig. S1 Absorption spectra of derivative 5 (10 uM) showing the variation of absorption intensity in a
H,O/DMSO mixture with different water fractions.
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Fig. S3 Absorption spectra of derivative 7 (10 uM)
showing the wvariation of absorption intensity in a
H,O/DMSO mixture with different water fractions.

Fig. S2 Absorption spectra of derivative 6 (10 uM)
showing the variation of absorption intensity in a
H,O/DMSO mixture with different water fractions.
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Fig. S4A SEM images of derivative 5 in H,O/DMSO (1:1, v/v) solvent mixture. (Scale bar 200 nm)
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Fig. S4B: Dynamic light scattering (DLS) results showing the variation in particle size diameter with

increasing water content in DMSO solution of 5. (A) 10% (B) 30% and (C) 50% water content in
DMSO solution of 5.
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Fig. S5 Spectra of derivatives 5-7 showing the variation of fluorescence intensity in H,O/DMSO mixture.
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Fig. S6 Fluorescence spectra of derivative 7 (10 uM) showing the variation of fluorescence intensity in
H,O/DMSO mixtures. Aex.=322 nm.
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Fig. S7TA: Dynamic light scattering (DLS) results showing the variation in particle size diameter with increasing
water content in DMSO solution of 7. (A) 10% (B) 30% and (C) 50% water content in DMSO solution of 7.
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Fig. S7B: Dynamic light scattering (DLS) results showing the variation in particle size diameter with increasing
water content in DMSO solution of 6. (A) 10% (B) 30% and (C) 50% water content in DMSO solution of 6.
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Fig. S9 SEM images of (A) 6 and (B) 7 showing the formation of aggregates.
Scale bar (A) 200 nm and (B) 2 um.
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Fig. S10 Fluorescence spectra of derivative 7 (10 pM) showing the variation of fluorescence intensity in
DMSO/Glycerol mixtures. Aex.=322 nm.
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Fig. S11 Plot showing the variation in fluorescence intensity of derivatives 5-7 in DMSO/glycerol
mixtures with different glycerol fractions.
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Fig. S12 Fluorescence spectra of derivative 5 (10 uM) showing the variation of fluorescence intensity with increase in
temperature in H,O/DMSO mixture (1:1, v/v). Aex.=310 nm.
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Fig. S13 Fluorescence spectra of derivative 7 (10 uM) showing the variation of fluorescence intensity with increase in
temperature in H,O/DMSO mixture (1:1, v/v). Aex.=322 nm.
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Fig. S14 Fluorescence anisotropy of derivative 7 in DMSO solution
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V/V) mixture.

S12



(A)

Water Fraction (%)

2.5 -
90 °
70 — g
2 50 8
8 2
c 30 =—— _‘2
S 15 10— g o+ . : .
‘5 0 — 350 390 430 470
B 1 4 Wavelength (nm)
<
05 Level-off tail
0

270 320 370 420 470
Wavelength (nm)

Fig. S16A Absorption spectra of derivative 8 (10 uM)
showing the variation of absorption intensity in H,O/THF
mixture with different water fractions. (Inset photographs
showing formation of new band at 420 nm)
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Fig. S16B Absorption spectra of derivative 9 (10 puM)
showing the variation of absorption intensity in H,O/THF
mixture with different water fractions. (Inset photographs
showing formation of new band at 420 nm)

Fig. S17 SEM images of derivatives (A) 8 and (B) 9 showing formation of aggregates. Scale bar 200 nm
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Fig. S18 Fluorescence spectra of 9 (10 uM) showing the variation of fluorescence intensity
in H,O/THF mixtures with different water fractions. Inset photographs (Under 365 nm UV-
light) (a) in pure THF (b) with the addition of 90% water in THF.



Table S1. Fluorescence lifetimes (tr) of derivative 8-9 recorded at different H,O/THF ratios (decay
monitored at the corresponding Amax; excitation at 300 nm)

Derivative H,O/THF ratio Amax (NM) Tr (0S) Tpa(ns)
Derivative 8 0/10 480 0.95 -
7/3 480 0.283 1.96
7/3 555 2.82 3.07
9/1 555 3.53 6.54
Derivative 9 0/10 480 1.44 -
7/3 480 0.00166 0.412
7/3 555 0.429 2.31
9/1 555 3.63 9.48

Table S2. Comparative photophysical properties of derivative 8-9:

Deriv Quantum T8 in AJAS K¢ K, Quantum AVAG | " Tra" Ky K,
ative vield (pp)* | solution s 110%™ vield (ns) (ns) s 10°s™h
in solution | (ns) (9p)in
aggregates
8 0.003% 0.957 100/0 4.07x10° 1.04 0.24 71/29 3.53 6.54 6.7x10 0.21
9 0.0064 1.44 100/0 4.44x10° 0.69 0.15 77/23 3.63 9.48 4.1x107 0.234

Table S2 @ solution in THF. ® monoexponential life time in THF. ¢ A, A, : fractional amount of molecules in each environment in solution. 4
Radiative rate constant in solution (K¢ = ®¢/1). ¢ non-radiative rate constant in solution (k,, = (1- ®¢)/15). faggregates in HyO/THF with 90 vol% of
water. Aj, Ay: ¢ fractional amount of molecules in each environment in aggregates. " T| ang Tr2: biexponential life time of aggregates in 90 vol% of
water in THF.  Radiative rate constant in aggregates (K = ®¢/1¢). I non-radiative rate constant in aggregates(K,, = (1- ®¢)/1¢).
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Fig. S19 (A) Change in fluorescence spectra of derivative 5 (10 pM) with the addition of PA in
H,O/DMSO (1:1) mixture, inset photograph shows the fluorescence intensity changes upon addition of
PA from (a) 0 to (b) 62 equiv. (B) Stern-Volmer plot in response to PA, inset Fig. shows the Stern-
Volmer plot obtained at lower concentration of PA.
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Fig. S20 (A) Change in fluorescence spectra of derivative 6 (10 uM) with the addition of PA in
H,O/DMSO (1:1) mixture, (B) Stern-Volmer plot in response to PA, inset Fig. shows the Stern-Volmer
plot obtained at lower concentration of PA.
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Fig. S21 Stern-Volmer plot in response to PA of derivative 7; inset figure shows the Stern-Volmer plot

obtained at lower concentration of PA.
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Fig. 22 (A) Change in fluorescence spectra of derivative 8 (10 uM) with the addition of PA in
H,O/THF (9:1) mixture, inset photograph shows the fluorescence intensity changes upon addition of
PA from (a) 0 to (b) 40 equiv. (B) Stern-Volmer plot in response to PA, inset Fig. shows the Stern-
Volmer plot obtained at lower concentration of PA.
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Fig. S23 (A) Change in fluorescence spectra of derivative 9 (10 puM) with the addition of PA in
H,O/THF (9:1) mixture, inset photograph shows the fluorescence intensity changes upon addition of
PA from (a) 0 to (b) 40 equiv. (B) Stern-Volmer plot in response to PA, inset Fig. shows the Stern-
Volmer plot obtained at lower concentration of PA.
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Fig. S24 Time resolved fluorescence emission spectra of aggregates of compound 5 with different
concentrations of PA and showing the fluorescence lifetime of aggregates of 5 is invariant at different

concentration of PA
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Fig.S25 Time resolved fluorescence emission spectra of aggregates of compound 6 with different
concentrations of PA and showing the fluorescence lifetime of aggregates of 6 is invariant at different

concentration of PA
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Fig. S26 Time resolved fluorescence emission spectra of aggregates of compound 7 with different
concentrations of PA and showing the fluorescence lifetime of aggregates of 7 is invariant at different
concentration of PA
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Fig. S27 Time resolved fluorescence emission spectra of aggregates of compound 8 with different
concentrations of PA and showing the fluorescence lifetime of aggregates of 8 is invariant at different

concentration of PA
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Fig. S28 Time resolved fluorescence emission spectra of aggregates of compound 9 with different
concentrations of PA and showing the fluorescence lifetime of aggregates of 9 is invariant at different

concentration of PA
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Fig. S30 Spectral overlaps of absorption spectrum of PA and fluorescence spectrum
of aggregates of derivative 6.
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Fig. S31 Spectral overlap of absorption spectrum of PA and fluorescence spectrum
of aggregates of compound 7.
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Fig. S32 Spectral overlaps of absorption spectrum of PA and fluorescence spectrum
of aggregates of derivative 8.
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Fig. S33 Spectral overlaps of absorption spectrum of PA and fluorescence spectrum
of aggregates of derivative 9.
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Fig. S35 Extent of fluorescence quenching of 8 and 9 (10 pM) observed in H,O/THF (9:1)
mixture after the addition of 40 equiv. of various nitroderivatives. 1=PA, 2=DNT, 3=DNB,

4=BQ, 5=DNBA, 6=TNT, 7=NM, 8=DMDNB
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(a)

Fig. S36 Photographs (under 365 nm UV
light) of derivative 5 on test strips (a)
before and (b) after dipping into aqueous
solutions of PA.

(a)

Fig. S37 Photographs of derivative 6 on test
strips (a) before and (b) after dipping into
aqueous solutions of PA.

:

Fig. S38 Photographs of derivative 8 on test
strips (a) before and (b) after dipping into
aqueous solutions of PA.

:

Fig. S39 Photographs of derivative 9 on test
strips (a) before and (b) after dipping into
aqueous solutions of PA.

(a)

Fig. S40 Photographs (under 365 nm UV light) of
fluorescence quenching of aggregates of derivative 5 on
test strips for the visual detection of small amount of PA
(a) test strip; PA of different concentration (b) 10* M (c)

10 M (d) 10 M.

@

*®

Fig. S41 Photographs (under 365 nm UV light) of
fluorescence quenching of nanoaggregates of derivative 6 on
test strips for the visual detection of small amount of PA (A)
test strip; PA of different concentration (b) 104 M (c) 10
M (d) 10 M.

(a)

(2)

Fig. S42 Photographs (under 365 nm UV light) of
fluorescence quenching of nanoaggregates of derivative 8 on
test strips for the visual detection of small amount of PA (A)
test strip; PA of different concentration (b) 104 M (c) 10
M (d) 10 M.

(@)

Fig. S43 Photographs (under 365 nm UV light) of
fluorescence quenching of nanoaggregates of derivative 9 on
test strips for the visual detection of small amount of PA (A)
test strip; PA of different concentration (b) 104 M (c) 10°M
(d) 10 M.
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'H NMR spectrum of derivative 5 in CDCl;
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Fig. S44 'H NMR spectrum of derivative 5 in CDCl;
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Mass spectrum of derivative 5
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Fig. S45 Mass spectrum of derivative 5
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"H NMR spectrum of derivative 7 in CDCl;
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Fig. S46 '"H NMR spectrum of derivative 7 in CDCl;
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Mass spectrum of derivative 7
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Fig. S47 Mass spectrum of derivative 7
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"H NMR spectrum of derivative 8 in CDCl;
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Fig. S48 'H NMR spectrum of derivative 8 in CDCls
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13C NMR spectrum of derivative 8 in CDCl;
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Fig. S49 13C NMR spectrum of derivative 8 in CDCl;.
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Intensity

Mass spectrum of derivative 8
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Fig. S50 Mass spectrum of derivative 8
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'"H NMR spectrum of derivative 9 in CDCl;

[ et e e e e e e e e I P Rt | =]
P SF b S Sd S o O o s On O 00 =3
PREERT AT i
I' O O
=
= H>0
i i
=1 =1
/CDCI3
JL -y L__._ L P |
o % |
T T T T T T T T T T T T T T T T T T T
10 =] =1 4 2 o

Fig. S51 '"H NMR spectrum of derivative 9 in CDCl;
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183.01

BC NMR spectrum of derivative 9
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Fig. S52 3C NMR spectrum of derivative 9 in CDCl;
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Mass spectrum of derivative 9
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Fig. S53 Mass spectrum of derivative 9
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