Electronic Supplementary Information

Highly Emissive Supramolecular Assemblies Based on $\boldsymbol{\pi}$-Stacked Polybenzofulvene Hosts and a Benzothiadiazole Guest

Andrea Cappelli, ${ }^{, a}$ Francesca Villafiorita-Monteleone, ${ }^{\text {b }}$ Giorgio Grisci, ${ }^{\text {a,b }}$ Marco Paolino, ${ }^{\text {a } V i n c e n z o ~}$ Razzano, ${ }^{\text {a }}$ Giuseppe Fabio, ${ }^{\mathrm{a}}$ Germano Giuliani, ${ }^{\text {a }}$ Alessandro Donati, ${ }^{\text {a }}$ Raniero Mendichi, ${ }^{\mathrm{b}}$ Antonella Caterina Boccia, ${ }^{\text {b }}$ Mariacecilia Pasini, ${ }^{\text {b }}$ Chiara Botta. ${ }^{\text {,b }}$

${ }^{\text {a Dipartimento di Biotecnologie, Chimica e Farmacia and European Research Centre for Drug }}$ Discovery and Development, Università degli Studi di Siena, Via Aldo Moro 2, 53100 Siena, Italy ${ }^{\text {b }}$ Istituto per lo Studio delle Macromolecole (CNR), Via E. Bassini 15, 20133 Milano, Italy

Content: PLE and PL spectra of blends of the polymers with DTBT Foerster radius values Experimental details for the preparation and the characterization of the newly-synthesized polybenzofulvene derivatives
(page 1)
(pages 1 and 2)
(pages 3-13)

Figure ESI-1. PLE (dotted line) and PL (solid line) spectra of blends of the polymers with 5\% (w/w) of DTBT, for poly-4'-DMFL-6-MO-BF3k (P1) (blue) and poly-6-DMFL-BF3k (P2) (red lines) cast films. PLE of DTBT cast film (green).

Foerster radius

The Foerster radius R_{0} can be estimated according to the following formula: ${ }^{1}$

$$
R_{0}{ }^{6}=8.79 \times 10^{-5}\left[k^{2} n^{-4} Q Y_{D} J(\lambda)\right]
$$

where k^{2} is the orientation factor, assumed to be $2 / 3$ for randomly oriented dipoles, ${ }^{1} n$ is the refractive index of the medium (assumed to be 1.65 in poly-6-DMFL-BF3k (P2) and poly-4'-DMFL-6-MO-BF3k (P1) blends and 1.7 in PVK blends), $Q Y_{D}$ is the quantum yield of the donor in the absence of the acceptor $(0.16,0.24$ and 0.10 for $\mathbf{P V K}, \mathbf{P 2}$, and $\mathbf{P 1}$ matrices, respectively) and $J(\lambda)$, the spectral overlap between the donor emission and the acceptor absorbance, is obtained as follows: ${ }^{1}$

$$
J(\lambda)=\frac{\int_{0}^{\infty} F_{D}(\lambda) \varepsilon_{A}(\lambda) \lambda^{4} d \lambda}{\int_{0}^{\infty} F_{D}(\lambda) d \lambda}
$$

where F_{D} is the corrected fluorescence intensity of the donor and ε_{A} is the molar extinction coefficient of DTBT $\left(9700 \mathrm{M}^{-1} \mathrm{~cm}^{-1}\right) .{ }^{2}$

Table ESI-1. Spectral Overlaps and R_{0} Values.
\(\left.$$
\begin{array}{|l|c|c|}\hline \text { Sample } & \begin{array}{c}J(\lambda) \quad\left[\mathrm{cm}^{-1}\right. \\
\left.\mathrm{nm}^{4}\right]\end{array}
$$ \& \mathrm{M}^{-1}

\hline PVK-DTBT \& 1.53 \times 10^{14}\end{array}\right]\)| |
| :---: |
| P2-DTBT |
| P1-DTBT |
| 2.57×10^{14} |

Experimental details.

Synthesis. Melting points were determined in open capillaries in a Gallenkamp apparatus and are uncorrected. Merck silica gel 60 (230-400 mesh) was used for column chromatography. Merck TLC plates, silica gel $60 \mathrm{~F}_{254}$ were used for TLC. NMR spectra were recorded with a Bruker AC200, a Varian Mercury-300, a Bruker DRX-400 AVANCE, a Bruker DRX-500 AVANCE, or a Bruker DRX-600 AVANCE spectrometer in the indicated solvents (TMS as internal standard): the values
of the chemical shifts are expressed in ppm and the coupling constants (J) in Hz. An Agilent 1100 LC/MSD operating with an electrospray source was used in mass spectrometry experiments.

Ethyl 1-oxo-3-phenyl-6-(trifluoromethylsulfonyloxy)-1H-indene-2-carboxylate (2).

A mixture of $\mathbf{1}(\mathrm{ref} 3)(1.00 \mathrm{~g}, 3.40 \mathrm{mmol})$ in dry dichloromethane $(20 \mathrm{~mL})$ containing TEA (1.4 $\mathrm{mL}, 10.0 \mathrm{mmol}$) was cooled at $0-5^{\circ} \mathrm{C}$, and trifluoromethanesulfonic anhydride ($2.9 \mathrm{~mL}, 17.2$ mmol) was added under an argon atmosphere. The resulting mixture was stirred at room temperature for 1 h and then treated with water and extracted with dichloromethane. The organic layer was dried over sodium sulfate and concentrated under reduced pressure. The residue was purified by flash chromatography with petroleum ether-ethyl acetate (85:15) as the eluent to afford compound 2 (1.20 g , yield 83\%) as yellow crystals. An analytical sample was obtained by recrystallization from n-hexane-ethyl acetate by slow evaporation (yellow prisms, mp $97-98{ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $1.16(\mathrm{t}, J=7.1,3 \mathrm{H}), 4.21(\mathrm{q}, J=7.1,2 \mathrm{H}), 7.32(\mathrm{~m}, 2 \mathrm{H}), 7.52(\mathrm{~m}, 6 \mathrm{H})$. MS(ESI): $m / z 449\left(\mathrm{M}+\mathrm{Na}^{+}\right)$.

Figure ESI-2. Structure of compound 2 found by crystallography. Ellipsoids enclose 50\% probability.

Ethyl 6-(9,9-dimethyl-9H-fluoren-2-yl)-1-oxo-3-phenyl-1H-indene-2-carboxylate (3).

In a microwave tube, a mixture of 9,9-dimethylfluorene-2-boronic acid pinacol ester (Aldrich, 147 $\mathrm{mg}, 0.459 \mathrm{mmol})$ in 4.0 mL of dry THF and 0.5 mL of dry MeOH containing $\mathrm{Cs}_{2} \mathrm{CO}_{3}(450 \mathrm{mg}, 1.38$
$\mathrm{mmol})$ was stirred at room temperature for 30 min . To the resulting mixture, $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(65 \mathrm{mg}$, $0.0926 \mathrm{mmol}), \mathrm{PPh}_{3}(12 \mathrm{mg}, 0.0458 \mathrm{mmol})$, and compound $\mathbf{8}(200 \mathrm{mg}, 0.469 \mathrm{mmol})$ were added in sequence. The reaction mixture was exposed to microwave irradiation in a CEM Discover apparatus (1 cycle of $10 \mathrm{~min}, \mathrm{~T}=80^{\circ} \mathrm{C}, \mathrm{W}=150, \mathrm{P}=250 \mathrm{psi}$) and then concentrated under reduced pressure. The residue was partitioned between ethyl acetate and water. The organic layer was dried over sodium sulfate and concentrated under reduced pressure. Purification of the residue by flash chromatography with petroleum ether-ethyl acetate (8:2) as the eluent afforded $3(120 \mathrm{mg}$, yield 56%) as a red-orange solid. An analytical sample was obtained by recrystallization from ethyl acetate by slow evaporation (red prisms, mp 162-163 ${ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $1.17(\mathrm{t}, J=$ $7.1,3 \mathrm{H}), 1.54(\mathrm{~s}, 6 \mathrm{H}), 4.22(\mathrm{q}, J=7.1,2 \mathrm{H}), 7.27(\mathrm{~d}, J=7.7,1 \mathrm{H}), 7.35(\mathrm{~m}, 2 \mathrm{H}), 7.46(\mathrm{~m}, 1 \mathrm{H}), 7.50-$ 7.62 (m, 6H), 7.66 (s, 1H), 7.69 (d, $J=7.7,1 \mathrm{H}), 7.75(\mathrm{~m}, 1 \mathrm{H}), 7.79(\mathrm{~d}, J=7.8,1 \mathrm{H}), 7.94(\mathrm{~s}, 1 \mathrm{H})$. MS(ESI): $m / z 471\left(\mathrm{M}+\mathrm{H}^{+}\right)$.

Figure ESI-3. Structure of compound 3 found by crystallography. Ellipsoids enclose 50\% probability.

Ethyl

To a solution of $\mathbf{3}(0.25 \mathrm{~g}, 0.531 \mathrm{mmol})$ in dichloromethane (10 mL) was added a 2 M solution of $\mathrm{Al}\left(\mathrm{CH}_{3}\right)_{3}$ in toluene ($1.1 \mathrm{~mL}, 2.2 \mathrm{mmol}$). The resulting mixture was stirred under a nitrogen atmosphere at room temperature for 30 min , and the $\mathrm{Al}\left(\mathrm{CH}_{3}\right)_{3}$ excess was then cautiously destroyed with a 1 M NaOH solution. The organic layer was dried over sodium sulfate and concentrated under reduced pressure. The residue was purified by flash chromatography with petroleum ether-ethyl acetate (85:15) as the eluent to obtain indenol $4\left(0.14 \mathrm{~g}\right.$, yield 54%) as a yellow oil. ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): 1.07(\mathrm{t}, J=7.1,3 \mathrm{H}), 1.53(\mathrm{~s}, 3 \mathrm{H}), 1.56(\mathrm{~s}, 3 \mathrm{H}), 1.86(\mathrm{~s}, 3 \mathrm{H}), 3.78(\mathrm{~s}, 1 \mathrm{H}), 4.15(\mathrm{~m}$, $2 \mathrm{H}), 7.24(\mathrm{~d}, J=7.7,1 \mathrm{H}), 7.34(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.51(\mathrm{~m}, 6 \mathrm{H}), 7.60(\mathrm{~m}, 2 \mathrm{H}), 7.70(\mathrm{~d}, J=1.3,1 \mathrm{H})$, $7.75(\mathrm{dd}, J=6.3,2.2,1 \mathrm{H}), 7.78(\mathrm{~d}, J=7.9,1 \mathrm{H}), 7.89(\mathrm{~d}, J=1.4,1 \mathrm{H}) . \mathrm{MS}(\mathrm{ESI}): m / z 509\left(\mathrm{M}+\mathrm{Na}^{+}\right)$.

Ethyl 6-(9,9-dimethyl-9H-fluoren-2-yl)-1-methylene-3-phenyl-1H-indene-2-carboxylate (6-

 DMFL-BF3k).A mixture of indenol $4(18 \mathrm{mg}, 0.037 \mathrm{mmol})$ in $\mathrm{CDCl}_{3}(0.80 \mathrm{~mL})$ containing p-toluenesulfonic acid monohydrate (PTSA, $1.0 \mathrm{mg}, 0.00526 \mathrm{mmol}$) was heated to reflux for 1 h . The reaction mixture was then cooled to room temperature and purified by flash chromatography with CDCl_{3} as the eluent to obtain a solution of pure monomer 6-DMFL-BF3k in CDCl_{3}. ${ }^{1} \mathrm{H}$ NMR (600 MHz , $\left.\mathrm{CDCl}_{3}\right): 1.07(\mathrm{t}, J=7.1,3 \mathrm{H}), 1.55(\mathrm{~s}, 6 \mathrm{H}), 4.15(\mathrm{q}, J=7.1,2 \mathrm{H}), 6.50(\mathrm{~s}, 1 \mathrm{H}), 6.67(\mathrm{~s}, 1 \mathrm{H}), 7.31-$ $7.38(\mathrm{~m}, 3 \mathrm{H}), 7.41-7.50(\mathrm{~m}, 6 \mathrm{H}), 7.59(\mathrm{dd}, J=7.9,1.5,1 \mathrm{H}), 7.62(\mathrm{dd}, J=7.9,1.6,1 \mathrm{H}), 7.68(\mathrm{~d}, J=$ $1.4,1 \mathrm{H}), 7.76(\mathrm{~m}, 1 \mathrm{H}), 7.80(\mathrm{~d}, J=7.9,1 \mathrm{H}), 7.98(\mathrm{~d}, J=1.4,1 \mathrm{H}) . \mathrm{MS}(\mathrm{ESI}): m / z 469\left(\mathrm{M}+\mathrm{H}^{+}\right)$.

Poly-[Ethyl 6-(9,9-dimethyl-9H-fluoren-2-yl)-1-methylene-3-phenyl-1 \boldsymbol{H}-indene-2-carboxylate] (Poly-6-DMFL-BF3k).

A mixture of indenol $4(180 \mathrm{mg}, 0.37 \mathrm{mmol})$ in CHCl_{3} (stabilized with amylene, 8.0 mL) containing p-toluenesulfonic acid monohydrate (PTSA, $14 \mathrm{mg}, 0.0736 \mathrm{mmol}$) was heated to reflux for 1 h . The reaction mixture was then cooled to room temperature and purified by flash chromatography with CHCl_{3} as the eluent to obtain a solution of pure monomer 6-DMFL-BF3k in
CHCl_{3}. The solution of the monomer was concentrated under reduced pressure and then dissolved again in CHCl_{3}. This procedure of dissolution/evaporation in CHCl_{3} was repeated for 5 times, while the polymerization process was followed by ${ }^{1} \mathrm{H}$ NMR analysis of the residues obtained after solvent evaporations. A solution of the final residue in chloroform (5.0 mL) was added dropwise to ethanol $(20 \mathrm{~mL})$ and the precipitate was collected by filtration and dried under reduced pressure to obtain poly-6-DMFL-BF3k (121 mg , yield 70%) as a white solid.

Figure ESI-4. Comparison of the ${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CDCl}_{3}\right)$ of monomer 6-DMFL-BF3k with that of the corresponding polymer poly-6-DMFL-BF3k.

Figure ESI-5. Comparison of the ${ }^{13} \mathrm{C}$ NMR spectrum of monomer 6-DMFL-BF3k with that of the corresponding polymer poly-6-DMFL-BF3k.

Ethyl 3-(4-bromophenyl)-2-(3-methoxybenzyl)-3-oxopropanoate (6).

To a mixture of ethyl 3-(4-bromophenyl)-3-oxopropanoate (5, Aldrich, $2.00 \mathrm{~g}, 7.38 \mathrm{mmol}$), NaI ($1.64 \mathrm{~g}, 10.9 \mathrm{mmol}$), and $\mathrm{NaHCO}_{3}(1.84 \mathrm{~g}, 21.9 \mathrm{mmol})$ in dry DMF (40 mL) was added 3methoxybenzylchloride (Aldrich, $1.16 \mathrm{~g}, 7.41 \mathrm{mmol}$). The resulting mixture was stirred at $50^{\circ} \mathrm{C}$ for 7 h and then quenched with a saturated solution of $\mathrm{NH}_{4} \mathrm{Cl}$. The reaction mixture was extracted with ethyl acetate and the organic layer was dried over sodium sulfate and concentrated under reduced pressure. The residue was purified by flash chromatography with petroleum ether-ethyl acetate (9:1) to obtain compound $6(2.67 \mathrm{~g}$, yield $92 \%)$ as a colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $1.11(\mathrm{t}, J$ $=7.1,3 \mathrm{H}), 3.28(\mathrm{~m}, 2 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 4.08(\mathrm{~m}, 2 \mathrm{H}), 4.55(\mathrm{t}, J=7.3,1 \mathrm{H}), 6.70-6.77(\mathrm{~m}, 3 \mathrm{H}), 7.15$ $(\mathrm{t}, J=7.3,1 \mathrm{H}), 7.57(\mathrm{~d}, J=8.6,2 \mathrm{H}), 7.79(\mathrm{~d}, J=8.5,2 \mathrm{H}) . \mathrm{MS}(\mathrm{ESI}): m / z 413,415\left(\mathrm{M}+\mathrm{Na}^{+}\right)$.

Ethyl 3-(4-bromophenyl)-6-methoxy-1H-indene-2-carboxylate (7).

Compound $6(2.67 \mathrm{~g}, 6.82 \mathrm{mmol})$ was amalgamated and mixed with polyphosphoric acid $(25 \mathrm{~g})$ at room temperature for 1 h . The reaction mixture was then cautiously treated with water and extracted with ethyl acetate. The organic layer was dried over sodium sulfate and concentrated under reduced pressure. The residue was purified by flash chromatography with petroleum ether-ethyl acetate (9:1) as the eluent to obtain indene derivative $7(1.84 \mathrm{~g}$, yield 72%) as a white crystalline solid. An analytical sample was obtained by recrystallization from ethyl acetate by slow evaporation (colorless prisms, mp $\left.125-126^{\circ} \mathrm{C}\right) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $1.15(\mathrm{t}, J=7.1,3 \mathrm{H}), 3.80(\mathrm{~s}, 2 \mathrm{H})$, $3.85(\mathrm{~s}, 3 \mathrm{H}), 4.12(\mathrm{q}, J=7.1,2 \mathrm{H}), 6.84(\mathrm{dd}, J=8.5,2.3,1 \mathrm{H}), 7.09(\mathrm{~d}, J=2.0,1 \mathrm{H}), 7.11(\mathrm{~d}, J=8.5$, $1 \mathrm{H}), 7.28$ (d, $J=8.3,2 \mathrm{H}), 7.57$ (d, $J=8.3,2 \mathrm{H}) . \mathrm{MS}(\mathrm{ESI}): \mathrm{m} / \mathrm{z} 395,397\left(\mathrm{M}+\mathrm{Na}^{+}\right)$.

Figure ESI-6. Structure of compound 7 found by crystallography. Ellipsoids enclose 50\% probability.

Ethyl 3-(4-bromophenyl)-6-methoxy-1-oxo-1H-indene-2-carboxylate (8).

A mixture of $7(1.84 \mathrm{~g}, 4.93 \mathrm{mmol})$ in 1,4 -dioxane $(80 \mathrm{~mL})$ containing $\mathrm{SeO}_{2}(4.97 \mathrm{~g}, 44.7 \mathrm{mmol})$ was heated at reflux overnight. The reaction mixture was then treated with a saturated solution of NaHCO_{3} and extracted with ethyl acetate. The organic layer was dried over sodium sulfate and concentrated under reduced pressure. The residue was purified by flash chromatography with petroleum ether-ethyl acetate (8:2) as the eluent to obtain compound $\mathbf{8}(1.60 \mathrm{~g}$, yield $84 \%)$ as a red
solid. An analytical sample was obtained by recrystallization from ethyl acetate by slow evaporation (red prisms, mp 153-154 ${ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 1.19 (t, $J=7.0,3 \mathrm{H}$), $3.86(\mathrm{~s}, 3 \mathrm{H}), 4.19$ $(\mathrm{q}, J=7.1,2 \mathrm{H}), 6.81(\mathrm{dd}, J=8.2,2.4,1 \mathrm{H}), 7.02(\mathrm{~d}, J=8.1,1 \mathrm{H}), 7.17(\mathrm{~d}, J=2.3,1 \mathrm{H}), 7.39(\mathrm{~d}, J=$ $8.4,2 \mathrm{H}), 7.62(\mathrm{~d}, J=8.4,2 \mathrm{H}) . \mathrm{MS}(\mathrm{ESI}): \mathrm{m} / \mathrm{z} 409,411\left(\mathrm{M}+\mathrm{Na}^{+}\right)$.

Figure ESI-7. Structure of compound 8 found by crystallography. Ellipsoids enclose 50\% probability.

Ethyl 3-[4-(9,9-dimethyl-9H-fluoren-2-yl)phenyl]-6-methoxy-1-oxo-1H-indene-2-carboxylate

 (9).In a microwave tube, a mixture of 9,9-dimethylfluorene-2-boronic acid pinacol ester (Aldrich, 83 $\mathrm{mg}, 0.259 \mathrm{mmol})$ in 4.0 mL of dry THF and 0.5 mL of dry MeOH containing $\mathrm{Cs}_{2} \mathrm{CO}_{3}(250 \mathrm{mg}, 0.77$ $\mathrm{mmol})$ was stirred at room temperature for 30 min . To the resulting mixture, $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(37 \mathrm{mg}$, $0.053 \mathrm{mmol}), \mathrm{PPh}_{3}(7.0 \mathrm{mg}, 0.027 \mathrm{mmol})$, and compound $\mathbf{8}(100 \mathrm{mg}, 0.258 \mathrm{mmol})$ were added in sequence. The reaction mixture was exposed to microwave irradiation in a CEM Discover apparatus (1 cycle of $15 \mathrm{~min}, \mathrm{~T}=80^{\circ} \mathrm{C}, \mathrm{W}=150, \mathrm{P}=250 \mathrm{psi}$) and then concentrated under reduced pressure. The residue was partitioned between ethyl acetate and water. The organic layer was dried over sodium sulfate and concentrated under reduced pressure. Purification of the residue by flash chromatography with petroleum ether-ethyl acetate (8:2) as the eluent afforded $9(88 \mathrm{mg}$, yield 68%) as a red solid. An analytical sample was obtained by recrystallization from ethyl acetate by slow evaporation (red prisms, mp $\left.167-168^{\circ} \mathrm{C}\right) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $1.21(\mathrm{t}, J=7.0,3 \mathrm{H})$,
$1.54(\mathrm{~s}, 6 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 4.23(\mathrm{q}, J=7.1,2 \mathrm{H}), 6.85(\mathrm{dd}, J=8.2,2.4,1 \mathrm{H}), 7.18(\mathrm{~m}, 2 \mathrm{H}), 7.35(\mathrm{~m}$, $2 \mathrm{H}), 7.46(\mathrm{~m}, 1 \mathrm{H}), 7.64(\mathrm{~m}, 3 \mathrm{H}), 7.70(\mathrm{~s}, 1 \mathrm{H}), 7.78(\mathrm{~m}, 4 \mathrm{H}) . \mathrm{MS}(\mathrm{ESI}): m / z 523\left(\mathrm{M}+\mathrm{Na}^{+}\right)$.

Ethyl 3-[4-(9,9-dimethyl-9H-fluoren-2-yl)phenyl]-1-hydroxy-6-methoxy-1-methyl-1H-indene-

2-carboxylate (10).

To a solution of $9(110 \mathrm{mg}, 0.219 \mathrm{mmol})$ in dichloromethane $(10 \mathrm{~mL})$ was added a 2 M solution of $\mathrm{Al}\left(\mathrm{CH}_{3}\right)_{3}$ in toluene $(0.44 \mathrm{~mL}, 0.88 \mathrm{mmol})$. The resulting mixture was stirred under a nitrogen atmosphere at room temperature for 45 min , and the excess of $\mathrm{Al}\left(\mathrm{CH}_{3}\right)_{3}$ was cautiously destroyed with a 1 M NaOH solution. The organic layer was dried over sodium sulfate and concentrated under reduced pressure. The residue was purified by flash chromatography with petroleum ether-ethyl acetate (8:2) as the eluent to obtain compound $\mathbf{1 0}$ (55 mg , yield 49%) as a yellow oil. ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): 1.12(\mathrm{t}, J=7.1,3 \mathrm{H}), 1.55(\mathrm{~s}, 6 \mathrm{H}), 1.79(\mathrm{~s}, 3 \mathrm{H}), 3.72(\mathrm{~s}, 1 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 4.17(\mathrm{~m}$, $2 \mathrm{H}), 6.83(\mathrm{dd}, J=8.4,2.3,1 \mathrm{H}), 7.15(\mathrm{~m}, 2 \mathrm{H}), 7.34(\mathrm{~m}, 2 \mathrm{H}), 7.44-7.52(\mathrm{~m}, 3 \mathrm{H}), 7.64(\mathrm{~d}, J=7.9$, $1 \mathrm{H}), 7.71-7.76(\mathrm{~m}, 4 \mathrm{H}), 7.81(\mathrm{~d}, J=7.8,1 \mathrm{H}) . \mathrm{MS}(\mathrm{ESI}): m / z 539\left(\mathrm{M}+\mathrm{Na}^{+}\right)$.

Ethyl 3-[4-(9,9-dimethyl-9H-fluoren-2-yl)phenyl]-6-methoxy-1-methylene-1 H -indene-2-

 carboxylate (4'-DMFL-6-MO-BF3k).A mixture of $\mathbf{1 0}(10 \mathrm{mg}, 0.0194 \mathrm{mmol})$ in $\mathrm{CDCl}_{3}(0.70 \mathrm{~mL})$ containing p-toluenesulfonic acid monohydrate (PTSA, $1.0 \mathrm{mg}, 0.00526 \mathrm{mmol}$) was heated to reflux for 1 h . The reaction mixture was then cooled to room temperature and purified by flash chromatography with CDCl_{3} as the eluent to obtain a solution of pure monomer 4'-DMFL-6MO-BF3k in $\mathrm{CDCl}_{3} .{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): 1.12(\mathrm{t}, J=7.1,3 \mathrm{H}), 1.54(\mathrm{~s}, 6 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 4.17(\mathrm{q}, J=7.1,2 \mathrm{H}), 6.35(\mathrm{~s}, 1 \mathrm{H}), 6.61(\mathrm{~s}$, $1 \mathrm{H}), 6.85(\mathrm{dd}, J=8.4,2.3,1 \mathrm{H}), 7.20(\mathrm{~d}, J=8.4,1 \mathrm{H}), 7.27(\mathrm{~d}, J=2.2,1 \mathrm{H}), 7.35(\mathrm{~m}, 2 \mathrm{H}), 7.45(\mathrm{~m}$, $1 \mathrm{H}), 7.51(\mathrm{~m}, 2 \mathrm{H}), 7.64(\mathrm{~m}, 1 \mathrm{H}), 7.71-7.78(\mathrm{~m}, 4 \mathrm{H}), 7.80(\mathrm{~d}, J=8.0,1 \mathrm{H}) . \mathrm{MS}(\mathrm{ESI}): m / z 499(\mathrm{M}+$ H^{+}).

Poly-[Ethyl 3-[4-(9,9-dimethyl-9H-fluoren-2-yl)phenyl]-6-methoxy-1-methylene-1H-indene-2carboxylate] (Poly-4'-DMFL-6MO-BF3k).

A mixture of $\mathbf{1 0}(330 \mathrm{mg}, 0.639 \mathrm{mmol})$ in CHCl_{3} (stabilized with amylene, 20 mL) containing p toluenesulfonic acid monohydrate (PTSA, $23 \mathrm{mg}, 0.121 \mathrm{mmol}$) was heated to reflux for 1 h . The reaction mixture was then cooled to room temperature and purified by flash chromatography with CHCl_{3} as the eluent to obtain a solution of pure monomer 4'-DMFL-6MO-BF3k in CHCl_{3}. The solution of the monomer was concentrated under reduced pressure and then dissolved again in CHCl_{3}. This procedure of dissolution/evaporation in CHCl_{3} was repeated for 5 times while the polymerization process was followed by ${ }^{1} \mathrm{H}$ NMR analysis of the residues obtained after solvent evaporations. A solution of the final residue in chloroform (5.0 mL) was added dropwise to ethanol $(20 \mathrm{~mL})$ and the precipitate was collected by filtration and dried under reduced pressure to obtain poly-4'-DMFL-6MO-BF3k (192 mg, yield 60%) as a white solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $0.4-1.7$ (br m, 9 H), 2.5-4.5 (br m, 7H), 5.7-8.0 (br m, 14H).

Figure ESI-8. Comparison of the ${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CDCl}_{3}\right)$ of monomer 4'-DMFL-6-MO-BF3k (bottom trace) with that of the corresponding polymer poly-4'-DMFL-6-MO-BF3k at the various stages of the spontaneous polymerization.

References

1 J. R. Lakowicz, Principles of Fluorescence Spectroscopy, Kluwer Academic/Plenum Publishers, New York, 1999.

2 C. Botta, P. Betti and M. Pasini. J. Mater. Chem. A, 2013, 1, 510-514.

3
A. Cappelli, G. Grisci, M. Paolino, F. Castriconi, G. Giuliani, A. Donati, S. Lamponi, R. Mendichi, A. C. Boccia, F. Samperi, S. Battiato, E. Paccagnini, M. Gentile, M. Licciardi, G.

Giammona and S. Vomero, Chem. Eur. J. 2013, 19, 9710-9721.

