Electronic Supporting Information

A star-shaped D- π -A small molecule based on *tris*(2-methoxyphenyl)amine for highly efficient solution-processed organic solar cells

Jie Min,*a Yuriy N. Luponosov,^b Alexander N. Solodukhin,^b Nina Kausch-Busies,^c Sergei A.

Ponomarenko, ^{b,d} Tayebeh Ameri,^a Christoph J. Brabec^{a,e}

^aInstitute of Materials for Electronics and Energy Technology (I-MEET), Friedrich-Alexander-University Erlangen-Nuremberg, Martensstraße 7, 91058 Erlangen, Germany

^bEnikolopov Institute of Synthetic Polymeric Materials of the Russian Academy of Sciences, Profsoyuznaya st. 70, Moscow 117393, Russia

^cHeraeus Precious Metals GmbH & Co. KG, Conductive Polymers Division (Clevios), Chempark Leverkusen Build. B202, D-51368 Leverkusen, Germany

^dChemistry Department, Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia

^eBavarian Center for Applied Energy Research (ZAE Bayern), Haberstraße 2a, 91058 Erlangen, Germany

E-mail: Min.Jie@ww.uni-erlangen.de (J. Min)

Figure S1. Thermogravimetric analysis of N(Ph(OMe)-2T-DCN-Me)₃ in air and inert atmosphere (nitrogen flow).

Figure S2. DSC scans of **N(Ph(OMe)-2T-DCV-Me)**₃. For the sake of simplicity, curves are shifted along heat flow axis.

Figure S3. J-V curves for N(Ph(OMe)-2T-DCV-Me)₃:PC₇₀BM (wt%) OSCs with various D:A ratios, under the illumination of AM 1.5G at 100 mW cm⁻².

Table 1. The photovoltaic performance of the OSCs based on $N(Ph(OMe)-2T-DCV-Me)_3$:PC70BM blends, under the illumination of AM 1.5G at 100 mW cm⁻²

N(Ph(OMe)-2T-DCV-	V _{oc}	J _{sc}	FF	PCE _{max}
Me) ₃ :PC ₇₀ BM (wt%)	[V]	[mA cm ⁻²]	[%]	$(PCE_{ave}^{a})[\%]$
1:1	0.87	8.12	45.0	3.18 (3.10)
1:1.5	0.88	8.28	44.8	3.26 (3.12)
1:2	0.88	8.45	52.7	3.92 (3.80)
1:2.5	0.87	7.99	52.3	3.64 (3.51)
1:3	0.90	7.61	53.1	3.64 (3.46)
1:4	0.89	6.99	42.4	2.64 (2.45)

^{*a*}The average PCE is obtained from six cells.

Figure S4. ¹H NMR spectrum of 3 in CDCl₃.

Figure S5. ¹³C NMR spectrum of **3** in CDCl₃.

Figure S6. ¹H NMR spectrum of 4 in CDCl₃.

Figure S7. ¹³C NMR spectrum of 4 in CDCl₃.

Figure S8. ¹H NMR spectrum of N(Ph(OMe)-2T-DCN-Me)₃ in CDCl₃.

Figure S9. ¹³C NMR spectrum of N(Ph(OMe)-2T-DCN-Me)₃ in CDCl₃.