Supporting information

Highly chemical and thermal stable luminescent Eu_xTb_{1-x} MOF

materials for broad-range pH and temperature sensors

Yun-Hu Han,^{a,b} Chong-Bin Tian,^{a,b} Qiao-Hong Li^a and Shao-Wu Du*a

^a State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China.

^b University of Chinese Academy of Sciences, Beijing, 100039, P. R. China.

Compound	1	2	
Formula	$C_{20}H_{22}N_4O_{14}Eu_2$	$C_{20}H_{22}N_4O_{14}Tb_2$	
fw	846.36	860.28	
Cryst syst	Orthorhombic	Orthorhombic	
space group	Pna2 ₁	Pna2 ₁	
a, Å	13.1154(16)	13.149(2)	
β, Å	6.6813(5)	6.6803(12)	
<i>c</i> , Å	29.007(3)	29.165(5)	
<i>V</i> , Å ³	2541.8(4)	2561.8(7)	
Ζ	4	4	
μ , mm ⁻¹	4.969	5.555	
$D_{\rm calcd}, { m g~cm^{-3}}$	2.212	2.230	
Flack	0.46(5)	0.47(4)	
GOF	1.125	1.083	
R_1	0.0705	0.0442	
wR_2	0.1679	0.1035	

 ${}^{a}R_{I} = \Sigma ||F_{0}| - |Fc|| / \Sigma |F_{0}|, \ wR_{2} = [\Sigma w (F_{0}^{2} - Fc^{2})^{2} / \Sigma w (F_{0}^{2})^{2}]^{1/2}$

Table S2 ICP of compound 3

	3-1	3-2	3- 3	3-4	3 -5	3- 6
Tb (%)	11.30	11.20	10.93	10.79	11.26	11.28
Eu (%)	22.54	22.79	22.86	21.55	22.97	22.86

 Table S3 Selected bond lengths (Å) and bond angles (°) of compounds 1 and 2

Compound 1				
Eu1—O6	2.347 (12)	Eu2—O4 ⁱⁱⁱ	2.234 (15)	
Eu1—O7 ⁱ	2.344 (15)	Eu2—O2 ^{iv}	2.333 (14)	
Eu1—O9	2.353 (15)	Eu2—O1	2.384 (12)	
Eu1—O8 ⁱⁱ	2.388 (14)	Eu2—O3 ^{iv}	2.414 (18)	
Eu1—O10	2.399 (17)	Eu2—O5	2.404 (14)	
Eu1—014	2.424 (17)	Eu2—O12	2.372 (19)	
Eu1—013	2.486 (19)	Eu2—O11	2.448 (16)	
Eu1—N3 ⁱ	2.71 (2)	Eu2—N1	2.48 (2)	
06—Eu1—O7 ⁱ	139.8 (5)	O4 ⁱⁱⁱ —Eu2—O2 ^{iv}	80.8 (5)	
O6—Eu1—O9	74.6 (5)	O4 ⁱⁱⁱ —Eu2—O1	127.0 (5)	
07 ⁱ —Eu1—O9	74.9 (5)	O2 ^{iv} —Eu2—O1	140.3 (5)	
06—Eu1—O8 ⁱⁱ	75.8 (5)	O4 ⁱⁱⁱ —Eu2—O3 ^{iv}	148.5 (5)	
O7 ⁱ —Eu1—O8 ⁱⁱ	124.2 (5)	O2 ^{iv} —Eu2—O3 ^{iv}	70.7 (5)	
O9—Eu1—O8 ⁱⁱ	148.4 (5)	O1—Eu2—O3 ^{iv}	73.6 (5)	
O6—Eu1—O10	78.7 (5)	O4 ⁱⁱⁱ —Eu2—O5	82.3 (5)	
O7 ⁱ —Eu1—O10	72.5 (6)	O2 ^{iv} —Eu2—O5	83.3 (5)	
O9—Eu1—O10	83.8 (6)	O1—Eu2—O5	74.6 (5)	
O8 ⁱⁱ —Eu1—O10	79.7 (6)	O3 ^{iv} —Eu2—O5	81.4 (6)	
O6—Eu1—O14	76.2 (5)	O4 ⁱⁱⁱ —Eu2—O12	123.3 (6)	
O7 ⁱ —Eu1—O14	135.9 (6)	O2 ^{iv} —Eu2—O12	105.0 (6)	
O9—Eu1—O14	101.9 (6)	O1—Eu2—O12	83.8 (5)	
O8 ⁱⁱ —Eu1—O14	81.5 (6)	O3 ^{iv} —Eu2—O12	78.1 (6)	
O10—Eu1—O14	151.6 (6)	O5—Eu2—O12	153.7 (6)	
O6—Eu1—O13	109.1 (5)	O4 ⁱⁱⁱ —Eu2—O11	75.9 (5)	
O7 ⁱ —Eu1—O13	85.9 (6)	O2 ^{iv} —Eu2—O11	74.3 (6)	
O9—Eu1—O13	72.7 (6)	O1—Eu2—O11	134.3 (5)	
O8 ⁱⁱ —Eu1—O13	128.4 (6)	O3 ^{iv} —Eu2—O11	107.8 (6)	
O10—Eu1—O13	151.7 (6)	O5—Eu2—O11	150.8 (5)	
O14—Eu1—O13	52.6 (6)	O12—Eu2—O11	53.5 (6)	
O6—Eu1—N3 ⁱ	149.3 (6)	O4 ⁱⁱⁱ —Eu2—N1	71.8 (6)	
O7 ⁱ —Eu1—N3 ⁱ	64.0 (6)	O2 ^{iv} —Eu2—N1	152.1 (6)	
09—Eu1—N3 ⁱ	135.9 (6)	01—Eu2—N1	65.3 (6)	
O8 ⁱⁱ —Eu1—N3 ⁱ	73.5 (6)	O3 ^{iv} —Eu2—N1	137.2 (6)	
O10—Eu1—N3 ⁱ	98.0 (6)	O5—Eu2—N1	98.0 (5)	
O14—Eu1—N3 ⁱ	96.8 (6)	O12—Eu2—N1	86.1 (6)	

O13—Eu1—N3 ⁱ	88.4 (6)	O11—Eu2—N1	93.4 (6)
Symmetry codes: (i) $x+1/2$, -	-y+1/2, z; (ii) x, y+1, z;	(iii) $x-1/2$, $-y+3/2$, z ; (iv) $x-1/2$	2, -y+1/2, z.
Compound 2			
Tb1—O19 ⁱ	2.321 (10)	Tb2—O21 ⁱ	2.329 (9)
Tb1—O15 ⁱⁱ	2.353 (9)	Tb2—O13 ⁱⁱ	2.350 (8)
Tb1—O30	2.390 (12)	Tb2—O20	2.362 (10)
Tb1—O11 ⁱⁱ	2.396 (11)	Tb2—O17 ⁱⁱ	2.375 (10)
Tb1—O22	2.386 (8)	Tb2—O18	2.388 (11)
Tb1—O16	2.397 (9)	Tb2—O12	2.397 (13)
Tb1—O14	2.447 (15)	Tb2—O31	2.453 (10)
Tb1—N1	2.609 (12)	Tb2—N2	2.598 (14)
019 ⁱ —Tb1—O15 ⁱⁱ	78.0 (3)	019 ⁱ —Tb1—O14	126.4 (4)
O19 ⁱ —Tb1—O30	79.2 (4)	O15 ⁱⁱ —Tb1—O14	106.0 (4)
O15 ⁱⁱ —Tb1—O30	73.6 (4)	O30—Tb1—O14	53.1 (4)
019 ⁱ —Tb1—O11 ⁱⁱ	148.8 (4)	O11 ⁱⁱ —Tb1—O14	74.6 (5)
015 ⁱⁱ —Tb1—O11 ⁱⁱ	73.6 (4)	O22—Tb1—O14	83.6 (4)
O30—Tb1—O11 ⁱⁱ	104.4 (4)	O16—Tb1—O14	151.5 (4)
O19 ⁱ —Tb1—O22	125.9 (3)	019 ⁱ —Tb1—N1	73.0 (4)
O15 ⁱⁱ —Tb1—O22	142.3 (4)	O15 ⁱⁱ —Tb1—N1	150.5 (4)
O30—Tb1—O22	133.9 (4)	O30—Tb1—N1	95.7 (4)
O11 ⁱⁱ —Tb1—O22	74.2 (3)	O11 ⁱⁱ —Tb1—N1	135.9 (4)
O19 ⁱ —Tb1—O16	81.8 (4)	O22—Tb1—N1	63.8 (4)
O15 ⁱⁱ —Tb1—O16	81.5 (4)	O16—Tb1—N1	99.1 (4)
O30—Tb1—O16	151.2 (4)	O14—Tb1—N1	87.6 (5)
011 ⁱⁱ —Tb1—O16	81.6 (4)	O17 ⁱⁱ —Tb2—O12	76.6 (5)
O22—Tb1—O16	74.9 (3)	O18—Tb2—O12	155.5 (5)
O21 ⁱ —Tb2—O13 ⁱⁱ	78.3 (4)	O21 ⁱ —Tb2—O31	77.6 (4)
O21 ⁱ —Tb2—O20	125.5 (4)	O13 ⁱⁱ —Tb2—O31	77.5 (4)
O13 ⁱⁱ —Tb2—O20	138.1 (4)	O20—Tb2—O31	136.1 (4)
O21 ⁱ —Tb2—O17 ⁱⁱ	148.2 (4)	O17 ⁱⁱ —Tb2—O31	105.8 (4)
O13 ⁱⁱ —Tb2—O17 ⁱⁱ	71.9 (4)	O18—Tb2—O31	151.0 (4)
O20—Tb2—O17ii	74.2 (4)	O12—Tb2—O31	51.9 (5)
O21i—Tb2—O18	79.7 (5)	O21i—Tb2—N2	73.2 (4)
O13ii—Tb2—O18	80.5 (4)	O13ii—Tb2—N2	151.4 (4)
O20—Tb2—O18	72.4 (4)	O20—Tb2—N2	65.1 (4)
017ii—Tb2—O18	84.6 (4)	O17ii—Tb2—N2	136.6 (4)
O21i—Tb2—O12	124.1 (5)	018—Tb2—N2	96.8 (4)
013ii—Tb2—O12	107.9 (4)	012—Tb2—N2	86.4 (5)
O20—Tb2—O12	87.2 (4)	O31—Tb2—N2	93.7 (5)
Symmetry codes: (i) $x-1/2$, $-y+3/2$, z ; (ii) $x-1/2$, $-y+1/2$, z .			

DonorH···Acceptor	D····A	DH···A
N(2)H(2C)····O(11)	2.837(19)	154
N(4)H(4B)····O(14)	3.10(2)	163
O(5)H(5A)···O(7)	2.697(19)	158
O(10)H(10B)····O(1)	2.642(18)	150
C(3)H(3B)····O(11)	2.65(2)	119
C(8)H(8B)····O(13)	2.80(3)	136
C(18)H(18A)····O(13)	3.44(2)	160

 Table S4 Hydrogen Bond of compound 1

Figure S1 The IR spectra of 1–3.

Figure S2 PXRD patterns (Left) for the as-synthesized 1–3 and the simulated patterns from singlecrystal X-ray data, and the PXRD patterns (Right) of sample 1 after immersed in solutions with different metal ions (1: Fe³⁺, 2: Cr³⁺, 3:Zn²⁺, 4: Cd²⁺, 5: Cu²⁺, 6: Co²⁺, 7: Ni²⁺, 8: Mn²⁺) PBS (9) and HEPES (10) buffer solutions for one week.

Figure S3 The TGA curves of 1–2.

Figure S4 The emission spectrum of 1 at temperature.

Figure S5 The emission spectrum of 2 at temperature.

Figure S6 The corresponding molecular orbital diagrams from TD-DFT electronic structure calculations for H_3 imdc and the basis transient state (2) and (3).

Figure S7 View of the normalized intensities of Eu³⁺/613 nm (red) and Tb³⁺/545 nm (green).

Figure S8 View of the luminescent emissions of different temperature of 1.

Figure S9 View of the luminescent emissions of different temperature of 2.

Figure S10 The emission spectra of different temperature of $Eu_{0.02}Tb_{0.98}$ -MOF.

Figure S11 Temperature dependent lifetimes of 2 (545 nm) and 1 (613 nm) (100–450 K). The decay curves are monitored at 545/613 nm and excited at 277 nm.

Figure S12 Temperature dependent lifetime of 3 (545/613 nm) (100–450 K). The decay curves are monitored at 545/613 nm and excited at 277 nm.