Supporting Information for
Computational Studies on Magnetism and Optical
\section*{Properties of Transition Metal Embedded Graphitic Carbon Nitride Sheet}
Dibyajyoti Ghosha ${ }^{\text {a }}$, Ganga Periyasamib ${ }^{\text {b }}$, Bradraj Pandey, ${ }^{\text {c }}$ and Swapan K. Pati ${ }^{*}{ }^{\text {c }}$
${ }^{a}$ Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, 560064, India
${ }^{b}$ Department of Chemistry, Central College Campus, Bangalore University, Bangalore 1.
${ }^{c}$ Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, 560064, India

Figure S1.Isosurface of charge density with 1.7 e \AA^{-3} of $g-C_{3} \mathrm{~N}_{4}$. The $\mathrm{N}_{\text {edge }}$ and $\mathrm{N}_{\text {bridge }}$ atoms are electron rich in nature. Ochre coloured surface denotes the electron density.

Figure S2. Partial density of states (pDOS) for $g-\mathrm{C}_{3} \mathrm{~N}_{4}$. From the plot it is clear that valance bands are majorly contributed from N whereas valance bands are coming from C .

Figure S3. 2×2 supercell of $\mathrm{TM}-\mathrm{g}-\mathrm{C}_{3} \mathrm{~N}_{4}$. This cell has been used to find out the magnetic ground state of these sheets. $\mathrm{d}_{\text {TM_TM_hori }}$ and $\mathrm{d}_{\text {TM_TM_dia }}$ are the distances between two TM atoms at horizontal and diagonal direstion, respectively. $\mathrm{d}_{\mathrm{M} \text {-Nedge }}$ (a-f) are the distances between $\mathrm{N}_{\text {edge }}$ and TM. We have numbered the $\mathrm{N}_{\text {edge }}$ atoms to show the dihedral angles among them and TM.

Table S1. Structural details of fully optimized geometry of TM-g-C $\mathrm{C}_{3} \mathrm{~N}_{4}$. Distances between two TMs, TM and $\mathrm{N}_{\text {edge }}$ (M-N; denoted as a, b, c as can be seen in Figure S2) and dihedral angles $\mathrm{N}_{\text {edge }}-\mathrm{N}_{\text {edge }}-\mathrm{N}_{\text {edge }}-\mathrm{TM}$ (notation is according to Figure S2) are given.

Metal		V	Cr	Mn	Fe	Co	Ni	Cu	Zn
$\mathrm{d}_{\text {TM_TM_hori }}\left(\AA\right.$ (${ }^{\text {a }}$		7.03	7.05	7.02	7.04	6.98	6.84	6.84	6.98
$\mathrm{d}_{\text {TM_TM_dia }}(\AA)$		7.03	6.97	7.01	7.04	6.78	6.85	6.81	6.87
$\mathrm{d}_{\text {M-Nedge }}$	a(1-TM)	2.35	2.28	2.35	2.36	2.39	2.52	2.40	2.34
	b(2-TM)	2.35	2.43	2.37	2.35	2.54	2.53	2.46	2.48
	c(3-TM)	2.35	2.46	2.40	2.35	2.77	2.72	2.76	2.85
	d(4-TM)	2.35	2.35	2.34	2.35	2.10	2.03	2.12	2.23
	e(5-TM)	2.35	2.43	2.40	2.36	2.10	2.02	2.11	2.29
	$\mathrm{f}(6-\mathrm{TM})$	2.35	2.37	2.39	2.36	2.65	2.71	2.70	2.17
Dihedral Angles	1-2-3-TM	4.81	0.42	5.82	6.49	21.36	28.65	30.44	21.46
	2-3-4-TM	3.76	2.07	0.86	4.48	5.31	7.24	7.18	8.03
	3-4-5-TM	3.58	-18.3	-16.9	3.57	-14.29	-8.87	-13.41	-20.09
	4-5-6-TM	4.69	-0.4	2.65	6.17	2.89	5.46	8.34	3.61
	5-6-1-TM	3.78	3.07	0.67	4.36	5.14	6.04	5.31	0.18
	6-1-2-TM	3.48	-17.4	-18.43	3.47	-30.5	-30.6	-33.63	-23.33

Table S2. The crystal ionic radius of 3d-transition metal atoms is tabulated. These are taken from Shannon R., Acta Crystallographica Section A 1976, 32, 751-767.

Ions(+2)	Crystal ionic radii
V	0.93
Cr	0.94
Mn	0.97
Fe	0.92
Co	0.88
Ni	0.83
* Cu	0.90
Zn	0.88

* For Cu oxidation state is $(+1)$.

(a)
(b)
- 2
(c)

- serergyesergexera.
(d)

(e)

Figure S4. Top view and side view of V-g-C $\mathrm{C}_{3} \mathrm{~N}_{4}$ (a) at initial i.e. DFT optimized, (b) after 1 picosecond (ps) and (c) after 2 ps run. Top view and side view of $\mathrm{Cu}-\mathrm{g}-\mathrm{C}_{3} \mathrm{~N}_{4}$ at (d) initial and (e) after 2 ps run. Orange and grey coloured balls are V and Cu , respectively.

-

- 08-80-00 $08=0-00=0=0-0$
(a)

- $80.80^{9-9} 0$
(c)
-

$88-890-808=8-80-00$
(d)

Figure S5. Top view and side view of $\mathrm{V}-\mathrm{g}-\mathrm{C}_{3} \mathrm{~N}_{4}$ (a) after 1 ps and (b) 2 ps run at 500 K and (c) after 1 ps and (d) 2 ps at 1000 K .

(a)

(b)

Figure S6. Demonstrations of (a) ferromagnetic and (b) antiferromagnetic coupling between TM atoms of TM-g-C $\mathrm{C}_{3} \mathrm{~N}_{4}$. Isosurface at a value of $0.025 \mathrm{e} / \AA^{3}$ is taken. Up and down spin densities are represented as ochre and yellow coloured surfaces, respectively.

Calculation of Magnetic Coupling Constants:

We have calculated magnetic coupling constant J by using following Heisenberg Hamiltonian,

$$
H=\sum_{<i j>} J_{i j}\left(S_{i} \cdot S_{j}\right)
$$

by considering rhombic (2×2) supercell and imposing periodic boundary condition. The H turns out to be
$\mathrm{H}=J\left(\mathrm{~s}_{1} \mathrm{~s}_{2}+\mathrm{s}_{2} \mathrm{~s}_{3}+\mathrm{s}_{3} \mathrm{~s}_{4}+\mathrm{s}_{4} \mathrm{~s}_{1}+\mathrm{s}_{2} \mathrm{~s}_{4}+\mathrm{s}_{3} \mathrm{~s}_{4}\right)$
Now, we can write total spin as,

$$
\mathrm{S}^{2}{ }_{\mathrm{T}}=\left(\mathrm{s}_{1}+\mathrm{s}_{2}+\mathrm{s}_{3}+\mathrm{s}_{4}\right)^{2}=\mathrm{s}_{1}^{2}+\mathrm{s}_{2}^{2}+\mathrm{s}_{3}^{2}+\mathrm{s}_{4}^{2}+2\left(\mathrm{~s}_{1} \mathrm{~s}_{2}+\mathrm{s}_{2} \mathrm{~s}_{3}+\mathrm{s}_{3} \mathrm{~s}_{4}+\mathrm{s}_{4} \mathrm{~s}_{1}+\mathrm{s}_{2} \mathrm{~s}_{4}+\mathrm{s}_{3} \mathrm{~s}_{4}\right)
$$

For spin state S, S^{2} has eigen value of $S(S+1) \hbar^{2}$. We have considered $\hbar=1$ here after. Thus, in terms of eigen values of above mentioned Hamiltonian we can write,

$$
\mathrm{E}=J / 2\left[\mathrm{~S}_{\mathrm{T}}\left(\mathrm{~S}_{\mathrm{T}}+1\right)-\mathrm{s}_{1}\left(\mathrm{~s}_{1}+1\right)-\mathrm{s}_{2}\left(\mathrm{~s}_{2}+1\right)-\mathrm{s}_{3}\left(\mathrm{~s}_{3}+1\right)-\mathrm{s}_{4}\left(\mathrm{~s}_{4}+1\right)\right]
$$

This energy equation is quite general and now depending upon TM, we will consider different $\mathrm{s}_{1}, \mathrm{~s}_{2}, \mathrm{~s}_{3}$ and s_{4} values and derive the exchange coupling constant.

For V-g-C $\mathbf{C}_{3} \mathbf{N}_{4}$, where $\mathrm{s}_{1}=\mathrm{s}_{2}=\mathrm{s}_{3}=\mathrm{s}_{4}=3 / 2$ (as V^{+2} has 3 unpaired electrons);
E comes out to,

$$
\mathrm{E}=J / 2\left[\mathrm{~S}_{\mathrm{T}}\left(\mathrm{~S}_{\mathrm{T}}+1\right)-15\right]
$$

Therefore we can write, energy for antiferromagnetic configuration taking $\mathrm{S}_{\mathrm{T}}=0$;

$$
\mathrm{E}_{\mathrm{AFM}}=-15 \mathrm{~J} / 2
$$

For ferromagnetic configuration, $\mathrm{S}_{\mathrm{T}}=6$ and so

$$
\mathrm{E}_{\mathrm{FM}}=27 \mathrm{~J} / 2
$$

So, $\Delta \mathrm{E}_{\mathrm{ex}}=\mathrm{E}_{\mathrm{FM}}-\mathrm{E}_{\mathrm{AFM}}$

$$
=21 \mathrm{~J}
$$

From DFT calculation, $\Delta \mathrm{E}_{\text {ex }}$ for this system appears as -90 meV .
Thus, $\boldsymbol{J}=\mathbf{- 4 . 3} \mathbf{~ m e V}$

Next, for $\mathbf{C r}-\mathbf{g}-\mathbf{C}_{3} \mathbf{N}_{\mathbf{4}}$, where $\mathrm{s}_{1}=\mathrm{s}_{2}=\mathrm{s}_{3}=\mathrm{s}_{4}=2$ (as Cr^{+2} has 4 unpaired electrons);
$\mathrm{E}=J / 2\left[\mathrm{~S}_{\mathrm{T}}\left(\mathrm{S}_{\mathrm{T}}+1\right)-24\right]$
For antiferromagnetic configuration, $\mathrm{S}_{\mathrm{T}}=0$
$\mathrm{E}_{\mathrm{AFM}}=12 \mathrm{~J}$
For ferromagnetic configuration, $\mathrm{S}_{\mathrm{T}}=8$
$\mathrm{E}_{\mathrm{FM}}=24 \mathrm{~J}$
So, $\Delta \mathrm{E}_{\text {ex }}=36 \mathrm{~J}$
From $D F T$ calculation, $\Delta \mathrm{E}_{\mathrm{ex}}=-80 \mathrm{meV}$
Therefore, $\boldsymbol{J}=\mathbf{- 2 . 2 2} \mathbf{~ m e V}$

Now for $\mathbf{F e}-\mathrm{g}-\mathrm{C}_{3} \mathbf{N}_{4}$, also $\mathrm{s}_{1}=\mathrm{s}_{2}=\mathrm{s}_{3}=\mathrm{s}_{4}=2$ (as Fe^{+2} has 4 unpaired electrons),
So, $\Delta \mathrm{E}_{\text {ex }}=36 \mathrm{~J}$
From DFT calculation, $\Delta \mathrm{E}_{\mathrm{ex}}=-53 \mathrm{meV}$
Thus, $\boldsymbol{J}=\mathbf{- 1 . 5} \mathbf{~ m e V}$

Figure S7. Calculated band structures for $\mathrm{TM}-\mathrm{g}-\mathrm{C}_{3} \mathrm{~N}_{4}$ where TM is (a) Cr , (b) Mn , (c) Fe , (d) Co , (e) Ni and (f) Cu .

Table S3. Structural details of fully optimized geometry of $\mathrm{Fe}-\mathrm{g}-\mathrm{C}_{3} \mathrm{~N}_{4}$ under different $\mathrm{U}_{\text {eff }}$ values. Distances between two TMs, TM and $\mathrm{N}_{\text {edge }}$ (M-N; denoted as a, b, c as can be seen in Figure S2) and dihedral angles $\mathrm{N}_{\text {edge }}-\mathrm{N}_{\text {edge }}-\mathrm{N}_{\text {edge }}-\mathrm{TM}$ (notation is according to Figure S 2) are given.

U $_{\text {eff }}$		$\mathbf{2}$	$\mathbf{2 . 5}$	$\mathbf{3 . 5}$	$\mathbf{4}$	$\mathbf{4 . 5}$	$\mathbf{5}$
$\mathrm{d}_{\text {TM_TM_hori }}(\AA)$	7.03	7.03	7.04	7.04	7.00	7.01	
$\mathrm{~d}_{\text {TM_TM_dia }}(\AA)$	7.04	7.04	7.04	7.04	7.04	7.04	
$\mathrm{~d}_{\text {M-Nedge }}$	$\mathrm{a}(1-\mathrm{TM})$	2.39	2.39	2.37	2.36	2.35	2.35
	$\mathrm{~b}(2-\mathrm{TM})$	2.34	2.37	2.36	2.36	2.33	2.33
	$\mathrm{c}(3-\mathrm{TM})$	2.34	2.34	2.35	2.35	2.35	2.35
	$\mathrm{~d}(4-\mathrm{TM})$	2.34	2.34	2.34	2.34	2.36	2.36
	$\mathrm{e}(5-\mathrm{TM})$	2.35	2.34	2.34	2.35	2.37	2.37
	$\mathrm{f}(6-\mathrm{TM})$	2.38	2.38	2.37	2.36	2.36	2.36
Dihedral	1-2-3-TM	6.2	6.2	6.00	5.93	5.91	6.00
Angles	2-3-4-TM	4.0	3.99	3.82	3.76	3.93	3.70
	3-4-5-TM	3.81	3.80	3.66	3.56	3.63	3.80
	4-5-6-TM	6.01	6.01	5.68	5.80	5.80	6.02
	5-6-1-TM	3.85	3.71	3.72	3.66	3.58	3.55
	6-1-2-TM	3.66	3.71	3.48	3.55	3.65	3.95

Figure S8. The energy of supercell with respect to various $U_{\text {eff }}$ parameter for 2×1 supercell of $\mathrm{Fe}-\mathrm{g}-\mathrm{C}_{3} \mathrm{~N}_{4}$ considering FM and AFM coupling between Fe atoms.

Figure S9. Values of average of S_{z} per unit cell of $\mathrm{Fe}-\mathrm{g}-\mathrm{C}_{3} \mathrm{~N}_{4}$ with respect to the temperature. The transition from ferromagnetic to paramagnetic state occurs (i.e. Curie temperature) at 115 K .

