Strong spin frustration from isolated triangular Cu(II) trimers in SrCu(OH)₃Cl with a novel cuprate layer

Teng-Teng Zhu^a, Wei Sun^a, Ya-Xi Huang^a, Zhi-Mei Sun^b, Yuanming Pan^c, Leon

Balents^d, and Jin-Xiao Mi^{a,*}

^aFujian Provincial Key Laboratory of Advanced Materials, Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen 361005, Fujian Province, People's Republic of China

^bSchool of Materials Science and Engineering, Beihang University, Beijing 100191, People's Republic of China

^cDepartment of Geological Sciences, University of Saskatchewan, 114 Science Place, Saskatoon, Canada SK S7N 5E2

^dKavli Institute for Theoretical Physics, University of California, Santa Barbara, California 93106, USA

* Corresponding author. Phone: +86-13696905136, Fax: +86-592-2183937, E-mail: jxmi@xmu.edu.cn

	1		1 1	()	(,5
atoms	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Sr(1)	0.0067 (5)	0.0092 (4)	0.0090 (4)	0.000	0.000	-0.0006 (4)
Sr(2)	0.0054 (3)	0.0103 (3)	0.0096 (3)	-0.0005 (2)	0.0001 (3)	0.0004 (3)
Cu(1)	0.0046 (6)	0.0099 (5)	0.0102 (6)	0.000	0.000	0.0014 (6)
Cu(2)	0.0050 (4)	0.0081 (4)	0.0106 (4)	0.0007 (3)	0.0011 (4)	0.0017 (4)
Cl(1)	0.0076 (13)	0.0177 (13)	0.0181 (14)	0.000	0.000	-0.0026 (10)
Cl(2)	0.0119 (9)	0.0097 (8)	0.0167 (9)	-0.0010 (7)	0.0032 (8)	-0.0019 (7)
O(1)	0.005 (3)	0.011 (3)	0.008 (2)	-0.002 (2)	0.000 (2)	0.001 (2)
O(2)	0.006 (4)	0.011 (4)	0.014 (4)	0.000	0.000	0.000 (4)
O(3)	0.007 (3)	0.009 (2)	0.014 (3)	0.001 (2)	0.005 (2)	0.000 (2)
O(4)	0.006 (2)	0.009 (2)	0.015 (3)	0.000 (2)	-0.001 (3)	0.005 (3)
O(5)	0.008 (3)	0.008 (2)	0.014 (3)	-0.003 (2)	-0.002 (2)	0.003 (2)

Table S1. Anisotropic atomic displacement parameters (Å²) of SrCu(OH)₃Cl

Table S2.	Geometric	parameters (۲Å, °) of SrCu	OH)a	$_{\rm S}Cl$
				/	. / -	/

Table S2. Geometric parameters (Å, °) of SrCu(OH) ₃ Cl					
Atom — atom	Distance	Atom — atom	Distance		
Sr(1)—O(4)	2.499 (6)	$Sr(2)$ — $Cl(2)^{v}$	2.998 (2)		
$Sr(1) - O(4)^{i}$	2.499 (6)	$Sr(2)$ — $Cl(1)^{iv}$	3.0102 (13)		
$Sr(1) - O(1)^{i}$	2.542 (6)	$Sr(2)$ — $Cl(2)^{iii}$	3.019 (2)		
Sr(1) - O(1)	2.542 (6)	$Cu(1)$ — $O(4)^{vii}$	1.940 (6)		
Sr(1)—O(5)	2.568 (5)	$Cu(1)$ — $O(4)^{viii}$	1.940 (6)		
$Sr(1) - O(5)^{i}$	2.568 (5)	Cu(1)—O(1)	1.957 (5)		
Sr(1)—O(2)	2.668 (7)	$Cu(1) - O(1)^{i}$	1.958 (5)		
Sr(2)—O(3) ⁱⁱⁱ	2.512 (6)	$Cu(2)$ — $O(5)^{ix}$	1.950 (5)		
Sr(2)—O(4)	2.518 (5)	Cu(2)—O(3)	1.959 (5)		
$Sr(2)$ — $O(3)^{iv}$	2.558 (6)	Cu(2)—O(2)	1.959 (5)		
Sr(2)—O(5)	2.632 (5)	Cu(2)—O(1)	1.974 (5)		
Atom – atom – atom	Angle	Atom –atom–atom	Angle		
$O(4)$ — $Sr(1)$ — $O(4)^{i}$	67.7 (3)	$O(4)$ — $Sr(2)$ — $Cl(1)^{iv}$	74.22 (13)		
$O(4)$ — $Sr(1)$ — $O(1)^{i}$	143.92 (18)	$O(3)^{iv}$ —Sr(2)—Cl(1) ^{iv}	76.93 (13)		
$O(4)^{i}$ — $Sr(1)$ — $O(1)^{i}$	103.15 (18)	$O(5)$ — $Sr(2)$ — $Cl(1)^{iv}$	84.18 (13)		
O(4)— $Sr(1)$ — $O(1)$	103.15 (18)	$Cl(2)^{v}$ — $Sr(2)$ — $Cl(1)^{iv}$	99.98 (7)		
$O(4)^{i}$ —Sr(1)—O(1)	143.92 (18)	$O(3)^{iii}$ — $Sr(2)$ — $Cl(2)^{iii}$	78.72 (13)		
$O(1)^{i}$ —Sr(1)—O(1)	62.8 (2)	$O(4)$ — $Sr(2)$ — $Cl(2)^{iii}$	81.34 (13)		
O(4)— $Sr(1)$ — $O(5)$	78.13 (16)	$O(3)^{iv}$ — $Sr(2)$ — $Cl(2)^{iii}$	72.63 (13)		
$O(4)^{i}$ —Sr(1)—O(5)	127.24 (18)	$O(5)$ — $Sr(2)$ — $Cl(2)^{iii}$	144.88 (12)		
$O(1)^{i}$ —Sr(1)—O(5)	127.13 (17)	$Cl(2)^{v}$ — $Sr(2)$ — $Cl(2)^{iii}$	124.88 (4)		
O(1)— $Sr(1)$ — $O(5)$	81.07 (17)	$Cl(1)^{iv}$ — $Sr(2)$ — $Cl(2)^{iii}$	115.67 (7)		
$O(4)$ — $Sr(1)$ — $O(5)^{i}$	127.24 (18)	$O(4)^{vii}$ — $Cu(1)$ — $O(4)^{viii}$	91.7 (3)		
$O(4)^{i}$ —Sr(1)—O(5) ⁱ	78.13 (16)	$O(4)^{vii}$ — $Cu(1)$ — $O(1)$	172.2 (3)		
$O(1)^{i}$ —Sr(1)—O(5) ⁱ	81.07 (17)	$O(4)^{\text{viii}}$ — $Cu(1)$ — $O(1)$	91.1 (2)		
$O(1)$ — $Sr(1)$ — $O(5)^{i}$	127.13 (17)	$O(4)^{vii}$ — $Cu(1)$ — $O(1)^{i}$	91.1 (2)		
$O(5)$ — $Sr(1)$ — $O(5)^{i}$	93.4 (2)	$O(4)^{viii}$ — $Cu(1)$ — $O(1)^{i}$	172.2 (3)		
O(4)— $Sr(1)$ — $O(2)$	83.28 (19)	$O(1)$ — $Cu(1)$ — $O(1)^{i}$	85.2 (3)		
$O(4)^{i}$ — $Sr(1)$ — $O(2)$	83.28 (19)	$O(5)^{ix}$ — $Cu(2)$ — $O(3)$	92.5 (2)		
$O(1)^{i}$ —Sr(1)—O(2)	60.7 (2)	$O(5)^{ix}$ — $Cu(2)$ — $O(2)$	91.4 (3)		
O(1)— $Sr(1)$ — $O(2)$	60.72 (19)	O(3)—Cu(2)—O(2)	174.3 (3)		
O(5)— $Sr(1)$ — $O(2)$	132.04 (13)	$O(5)^{ix}$ — $Cu(2)$ — $O(1)$	174.5 (2)		
$O(5)^{i}$ — $Sr(1)$ — $O(2)$	132.04 (13)	O(3) - Cu(2) - O(1)	92.1 (2)		
$O(3)^{iii}$ — $Sr(2)$ — $O(4)$	104.56 (18)	O(2) - Cu(2) - O(1)	84.1 (3)		
$O(3)^{iii}$ — $Sr(2)$ — $O(3)^{iv}$	114.00 (10)	Cu(1) - O(1) - Cu(2)	119.4 (3)		
$O(4)$ — $Sr(2)$ — $O(3)^{iv}$	127.08 (19)	Cu(1)—O(1)—H(1)	117 (7)		
$O(3)^{iii}$ — $Sr(2)$ — $O(5)$	80.77 (18)	Cu(2)—O(1)—H(1)	102 (6)		
O(4)— $Sr(2)$ — $O(5)$	76.62 (18)	$Cu(2)$ — $O(2)$ — $Cu(2)^i$	112.6 (4)		
$O(3)^{iv}$ — $Sr(2)$ — $O(5)$	142.31 (16)	Cu(2)—O(2)—H(2)	106 (5)		

$O(3)^{iii}$ — $Sr(2)$ — $Cl(2)^{v}$	73.62 (13)	$Cu(2)^{i}$ — $O(2)$ — $H2$	106 (5)
$O(4)$ — $Sr(2)$ — $Cl(2)^{v}$	151.39 (15)	Cu(2)—O(3)—H3	110 (7)
$O(3)^{iv}$ —Sr(2)—Cl(2) ^v	76.63 (13)	$Cu(1)^{ii}$ — $O(4)$ —H4	102 (7)
$O(5)$ — $Sr(2)$ — $Cl(2)^{v}$	74.92 (12)	Cu(2)v—O(5)—H5	106 (8)
$O(3)^{iii}$ —Sr(2)—Cl(1) ^{iv}	164.73 (14)		

Symmetry codes: (i) -*x*+1, *y*, *z*; (ii) *x*, *y*, *z*+1; (iii) -*x*+3/2, -*y*+1, *z*+1/2; (iv) *x*, *y*+1, *z*+1; (v) *x*, *y*+1, *z*; (vi) -*x*+3/2, -*y*+2, *z*-1/2; (vii) -*x*+1, *y*, *z*-1; (viii) *x*, *y*, *z*-1; (ix) *x*, *y*-1, *z*; (x) -*x*+3/2, -*y*+1, *z*-1/2; (xi) *x*, *y*-1, *z*-1; (xii) -*x*+1, *y*-1, *z*-1.

Table S3. Hydrogen-bond geometry (Å, °) of SrCu(OH)₃Cl

	0 7		/-		
D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A	
$O(1)$ — $H(1)$ ···· $Cl(2)^x$	0.81 (3)	2.40 (3)	3.210 (6)	175 (8)	
$O(2)$ — $H(2)$ ··· $Cl(1)^{ii}$	0.82 (3)	2.49 (7)	3.249 (9)	154 (13)	
O(3)—	0.91(2)	2.05(8)	2 162 (6)	122 (9)	
$H(3)\cdots Cl(2)^{viii}$	0.81 (3)	2.93 (8)	5.402 (0)	125 (8)	
$O(3)$ — $H(3)$ ··· $Cl(2)^x$	0.81 (3)	2.80 (6)	3.506 (6)	148 (8)	
O(4)— $H(4)$ ···· $Cl(2)$	0.81 (3)	2.52 (6)	3.224 (5)	145 (9)	
$O(5)$ — $H(5)$ ··· $Cl(2)^v$	0.81 (3)	2.90 (9)	3.436 (5)	126 (9)	
O(5)— $H(5)$ ···· $O(3)$ ⁱⁱⁱ	0.81 (3)	2.58 (6)	3.334 (8)	155 (11)	
			1/0 ()	() 1	

Symmetry codes: (ii) *x*, *y*, *z*+1; (iii) –*x*+3/2, –*y*+1, *z*+1/2; (v) *x*, *y*+1, *z*; (viii) *x*, *y*, *z*-1; (x) –*x*+3/2, –*y*+1, *z*-1/2.

Figure S1. Morphology of SrCu(OH)₃Cl crystals under optical microscope

Figure S2. Powder X-ray diffraction patterns of experimental products from variable amounts of LiOH·H₂O, while keeping the amounts of CuCl₂·2H₂O (1.70 g), LiCl·H₂O (1.20 g), SrCl₂·6H₂O (2.66 g) and H₂O (10 mL), at 513K for 3 days. Bragg bar positions (i), (ii) and (iii) for SrCu(OH)₃Cl, CuO and Sr₂(OH)₂Cu(OH)₄, respectively.

Figure S3. EXD spectrum of SrCu(OH)₃Cl

Figure S4. Morphology of a SrCu(OH)₃Cl crystal under scanning electron microscope. Marked spot denotes the position where the EXD spectrum in Figure S3 was measured.

Figure S5. Magnetization-field loop of SrCu(OH)₃Cl at 2 K