Supplementary Materials

Nanoscale characterization and magnetic property of $\mathbf{C o}_{81} \mathbf{C u}_{19} / \mathbf{C u}$

 multilayer nanowires
Junwei Zhang ${ }^{\text {a }}$, Hongbin $\mathbf{M a}^{\text {a }}$, Senfu Zhang ${ }^{\text {a }}$, Hong Zhang ${ }^{\text {a }}$, Xia Deng ${ }^{\text {a }}$, Qianqian

Lan $^{\text {a }}$, Desheng Xue ${ }^{\text {a }}$, Feiming Bai ${ }^{\text {b }}$, Nigel J. Mellors ${ }^{\text {c }}$, and Yong Peng ${ }^{\text {a, * }}$
${ }^{\text {a }}$ Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou 730000, China
${ }^{\mathrm{b}}$ State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology, Chengdu 610054, China
${ }^{\mathrm{c}}$ Nano Materials Group, School of Computing, Science and Engineering, University of Salford, Greater Manchester M5 4WT, UK
E-mail: pengy@1zu.edu.cn

Figure S1. EDX spectra of the electrodeposited CoCu nanowires were obtained at the five different areas.

Times	Co atomic $(\%)$	Cu atomic $\mathbf{(\%)}$
$\mathbf{1}$	80.74	19.26
$\mathbf{2}$	81.22	18.78
$\mathbf{3}$	81.23	18.77
$\mathbf{4}$	80.93	19.07
$\mathbf{5}$	80.91	19.09
average value	81.006	18.994
	81.006 ± 0.266	$19.994+0.266$

Table S1. The proportions of elements $(\mathrm{Co}: \mathrm{Cu})$ acquired from the Figure S2.

The composition estimation of Co-rich layer by using Vegard's law:

Vegard's law ${ }^{\text {S1 }}$ states that the lattice constant in a bulk binary alloy results from linear interpolation between the lattice constants of the pure constituent elements. Its formula is $a=x a_{1}+(1-x) a_{2}$, where a, a_{1} and a_{2} are the lattice constants of the bulk binary alloy and their pure constituent elements, respectively; x is the atomic ratio of one of the constituent elements in the binary alloy. In our case, as determined by above SAED measurements, the lattice constant a of the CoCu alloy nanowires is $3.55 \AA$, the lattice constant a_{1} of pure Co nanowire is $3.54 \AA$, and the lattice constant
a_{2} of Cu nanowire is $3.61 \AA$. The atomic ratio x of Co is then calculated to be 84.85%. This value is matched with the experimental data ($\mathrm{x}=81 \%$) measured by EDX in error.

Reference

S1: L. Vegard, Z. Phys., 1921, 5, 17.

