Supporting information

Crystal phase transition in Li_xNa_{1-x}GdF₄ solid solution nanocrystals - tuning of optical properties

M. Banski,^a M. Afzaal,^b D. Cha,^c X. Wang,^c H. Tan,^d J. Misiewicz^a and A. Podhorodecki,^a

^aInstitute of Physics, Wroclaw University of Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland

^bCenter of Research Excellence in Renewable Energy, King Fahd University of Petroleum and Minerals, PO Box: 1292, Dhahran, 31261, Saudi Arabia

^cAdvanced Nanofabrication, Imaging and Characterization Laboratory, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia

^dAnalytical Chemistry Laboratory, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia

Fig. S1 ICP-AES analysis of Li⁺ ions incorporated in $Li_yNa_{1-y}GdF_4$ NCs depending on the fraction of Li⁺ precursors used in synthesis, x = [Li-TFA]/([Li-TFA] + [Na-TFA]), y = [Li+]/([Li+] + [Na+]).

Fig. S2 Absorbance spectra of Li_xNa_{1-x}GdF₄ nanocrystals. Absorption of TOPO is marked as striped area.

Fig. S3 Ratio of integrated absorbance peaks of Eu³⁺ (394 nm) and Gd³⁺ (272 nm) ions in a function of Li⁺ precursors used in synthesis (x).

Fig. S4 Full width at high maximum of ${}^{5}D_{0}$ - ${}^{7}F_{2}$ transition peaks.