Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2014

Supporting Information

Photophysical Properties of Ionic Liquid-Assisted Porphyrin Nanoaggregate -Nickel Phthalocyanine Conjugates and Singlet Oxygen Generation

Sadananda Mandal, Simanta Kundu, Santanu Bhattacharyya, and Amitava Patra*

Department of Materials Science, Indian Association for the Cultivation of Science, Kolkata, 700 032, India

*Authors to whom correspondence should be addressed; electronic mail: <u>msap@iacs.res.in</u> Phone: (91)-33-2473-4971, Fax: (91)-33-2473-280

Sample	Emission (nm)	τ ₁ (ns) (a ₁)	$\begin{array}{c} \tau_2 \ (ns) \\ (a_2) \end{array}$	τ ₃ (ns) (a ₃)	<τ> (ns)
ZnOEP	597	0.10	0.63		0.21
nanoaggregate		(0.79)	(0.21)		
	637	0.30	0.74		0.48
		(0.60)	(0.40)		
ZnOEP	597	0.09	0.62		0.20
nanoaggregate		(0.78)	(0.22)		
+ 4 μM Ni-PC	637	0.28	0.73		0.45
		(0.62)	(0.38)		
ZnOEP	597	0.05	0.49	1.49	0.11
nanoaggregate		(0.85)	(0.14)	(~0)	
+ 12 μM Ni-PC	637	0.10	0.53	1.87	0.31
		(0.55)	(0.44)	(0.01)	
ZnOEP	597	0.04	0.47	1.81	0.10
nanoaggregate		(0.87)	(0.13)	(~0)	
+ 20 μM Ni-PC	637	0.09	0.52	2.30	0.29
		(0.58)	(0.41)	(0.01)	

 Table T1: Decay Parameters of ZnOEP nanoaggregate in water at the excitation

 wavelength of 375 nm

Sample	Emission	τ_1 (ns)	τ_2 (ns)	τ_3 (ns)	<\mathcal{t}>(ns)
	(nm)	(a_1)	(a_2)	(a_3)	
7nOEP	597	0.09	0.58	2 / 1	0.30
nanoaggregate	571	(0.71)	(0.38)	(0.04)	0.50
nuneu88108ute	637	0.34	1.00	3.85	0.79
		(0.62)	(0.31)	(0.07)	
ZnOEP	597	0.08	0.65	2 73	0 28
nanoaggregate $+4$	• • • •	(0.76)	(0.21)	(0.03)	0.20
μM Ni-PC	637	0.30	0.95	3.85	0.78
·		(0.57)	(0.36)	(0.07)	
ZnOEP	597	0.08	0.61	2.54	0.26
nanoaggregate + 12		(0.76)	(0.21)	(0.03)	
μM Ni-PC	637	0.23	0.82	3.64	0.69
		(0.51)	(0.43)	(0.06)	
ZnOEP	597	0.07	0.64	2.68	0.26
nanoaggregate + 20		(0.78)	(0.19)	(0.03)	
μM Ni-PC	637	0.16	0.76	3.59	0.65
		(0.49)	(0.45)	(0.06)	

Table T2: Decay Parameters of CTAB-assisted ZnOEP nanoaggregate in water at the excitation wavelength of 375 nm

Figure S1: Absorption spectra of ZnOEP in different solvents

Figure S2: Zeta potential curves of different systems.

Figure S3: (A) UV-vis and (B) Photoluminescence spectra of ZnOEP in IL containing DCM solution in presence of different concentrations of Ni-PC.

Figure S4: Photoluminescence decay curves of ZnOEP in IL containing DCM solution in presence of different concentrations of NiPC at the emission wavelength of 597 nm.

Figure S5: (A) UV-vis and (B) Photoluminescence spectra of ZnOEP nanoaggregate (prepared by re-precipitation method) in presence of different concentrations of NiPC. The concentrations of NiPC are 0, 2, 4, 6, 8, 12, 16 and 20 μ M.

Figure S6: Photoluminescence decay curves of ZnOEP nanoaggregate (prepared by reprecipitation method) at the emission wavelength of (A) 597 nm and (B) 637 nm, in presence of different concentrations of NiPC (a) 0 μ M, (b) 4 μ M, (c) 12 μ M and (d) 20 μ M NiPC (Excitation wavelength at 375 nm).

Figure S7: (A) UV-vis and (B) photoluminescence spectra of ZnOEP nanoaggregate (CTAB-assisted) in presence of different concentrations of NiPC. The concentrations of NiPC are 0, 2, 4, 6, 8, 12, 16 and 20 μ M.

Figure S8: Photoluminescence decay curves of ZnOEP nanoaggregate (CTAB-assisted) at the emission wavelength of (A) 597 nm and (B) 637 nm, in presence of different concentrations of NiPC (a) 0 μ M, (b) 4 μ M, (c) 12 μ M and (d) 20 μ M NiPC (Excitation wavelength at 375 nm).

Figure S9: (A) UV-vis and (B) photoluminescence spectra of ZnOEP nanoaggregate (SDS-assisted) in presence of different concentrations of NiPC. The concentrations of NiPC are 0, 2, 4, 6, 8, 12, 16 and 20 μ M.