Electronic Supplementary Information

Tetrahydro[5]helicene-based full-color emission dyes in both solution and solid state:

synthesis, structures, photophysical properties and optical waveguide application

Meng Li,^{a,c} Wei Yao,^b Jun-Dao Chen,^a Hai-Yan Lu,^{*,c} YongSheng Zhao,^{*,b} and Chuan-Feng Chen^{*,a}

^aBeijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. ^bInstitute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. ^cUniversity of Chinese Academy of Sciences, Beijing 100049, China.

E-mail: cchen@iccas.ac.cn; yszhao@iccas.ac.cn; haiyanlu@ucas.ac.cn

Contents

1.	General information	S2
2.	Synthesis and characterization of new compounds	
3.	X-ray crystallographic data of 4c-e	S17
4.	Photophysical properties of 5a-o	.S22
5.	DFT calculations of 5a-o and 7	.S38
6.	¹ H NMR and ¹³ C NMR spectra of new compounds	.S94

1. General information

All reactants were commercial and used without further purification excepted as noted. Melting points are uncorrected. ¹H NMR and ¹³C NMR spectra were recorded with a DMX300 NMR spectrometer. MALDI-TOF mass spectra were recorded with a BIFLEXIII mass spectrometer. HRMS mass spectra were measured in the ESI mode. All calculations were performed using the SHELXL97 and crystal structure crystallographic software packages. The UV-Vis absorption spectra were recorded on a JASCO V-550 spectrophotometer. Fluorescence spectra were measured on a Hitachi F-7000 fluorometer equipped with a Xenon lamp excitation source. Photographs of emissions were recorded with a Cannon digital camera. Absolute fluorescence quantum yield, measured by Hamamatsu Absolute PL Quantum Yield Spectrometer C11347. Fluorescence lifetimes were measured by Quantaurus Tau C11367-11. PL images were recorded with Olympus research inverted system microscope (FV1000-IX81) equipped with a charge couple device camera (CCD, Olympus DP71).

2. Synthesis and characterization of new compounds

Compound 2. A mixture of **1** (11.4 g, 20 mmol) and *n*-propylamine (11.8 g, 0.1 mol) in DMF (100 mL) was heated at 70 °C for 24 hours. The reaction mixture was cooled to room temperature, and then added ethyl acetate (200 mL). The organic phase was washed with saturated brine (3×100 mL), dried over anhydrous MgSO₄. The solvent was removed in *vacuo*, and the residue was purified by column chromatography (ethyl acetate : petroleum ether 1:3, v/v, $R_f = 0.45$) to give **2** (8.5 g, 70%) as yellow solid. m. p.: 271-272 °C. ¹H NMR (300 MHz, CDCl₃): δ 7.52 (s, 2H), 6.66 (s, 2H), 4.18–4.07 (m, 2H), 3.71–3.60 (m, 2H), 3.38 (s, 6H), 2.90–2.75 (m, 4H), 2.55–2.43 (m, 2H), 1.78–1.65 (m, 2H), 0.97 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃): δ 168.9, 153.8, 138.5, 137.9, 133.2, 133.1, 132.6, 126.6, 114.5, 112.1, 56.1, 39.6, 27.5, 24.3, 22.0, 11.5. MALDI-TOF MS: *m/z* 610.1 [M+H]⁺. HRMS (ESI): *m/z* calcd for C₂₉H₂₆Br₂NO₄ [M + H]⁺ 610.0223, found 610.0215.

General procedure for the synthesis of 4 by Suzuki-Miyaura cross coupling:

To a mixture of compound **2** (600 mg, 0.99 mmol), K_2CO_3 (1.36 g, 9.9 mmol), and arylboronic acid (2.97 mmol) in DMF (30 mL) and toluene (20 mL) under argon atmosphere was added catalytic amount of $Pd(PPh_3)_4$ (5% mol). The resulting mixture was stirred for 12 hours at 90°C under argon atmosphere, cooled to room temperature and then poured into ethyl acetate (100 mL). The organic layer was washed with saturated brine (3×100 mL), dried over anhydrous MgSO₄, and then concentrated in *vacuo*. The

residue was purified by column chromatography with ethyl acetate and petroleum ether (1:5, v/v) as eluent to give the pure product.

Compound 4a. According to the general method, **4a** (473 mg, 79%) was obtained as yellow powder. m. p.: 267-268 °C. ¹H NMR (300 MHz, CDCl₃): δ 7.54–7.51 (m, 4H), 7.44–7.39 (m, 4H), 7.37–7.27 (m, 4H), 6.87 (s, 2H), 4.19–4.14 (m, 2H), 3.70–3.64 (m, 2H), 3.33 (s, 6H), 2.95–2.83 (m, 4H), 2.64–2.52 (m, 2H), 1.80–1.68 (m, 2H), 0.99 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃): δ 169.2, 154.3, 138.7, 138.5, 138.0, 133.2, 132.1, 131.0, 130.1, 129.4, 128.3, 127.4, 126.2, 114.1, 55.3, 39.5, 27.7, 24.5, 22.1, 11.6. MALDI-TOF MS: *m/z* 605.4 [M]⁺. HRMS (ESI): *m/z* calcd for C₄₁H₃₆NO₄ [M + H]⁺ 606.2639, found 606.2631.

Compound 4b. According to the general method, **4b** (445 mg, 71%) was obtained as yellow powder. m. p.: 251-253 °C. ¹H NMR (300 MHz, CDCl₃): δ 7.43–7.41 (m, 4H), 7.27 (s, 2H), 7.23–7.21 (m, 4H), 6.85 (s, 2H), 4.18–4.13 (m, 2H), 3.73–3.59 (m, 2H), 3.31 (s, 6H), 2.97–2.80 (m, 4H), 2.65–2.49 (m, 2H), 2.39 (s, 6H), 1.79–1.67 (m, 2H), 0.98 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃): δ 169.2, 154.3, 138.7, 138.5, 137.2, 135.0, 132.9, 132.0, 130.9, 129.9, 129.3, 129.0, 126.2, 114.0, 55.2, 39.5, 27.7, 24.5, 22.1, 21.4, 11.6. MALDI-TOF MS: *m/z* 633.4 [M]⁺. HRMS (ESI): *m/z* calcd for C₄₃H₄₀NO₄: [M + H]⁺ 634.2952, found 634.2944.

Compound 4c. According to the general method, **4c** (495 mg, 81%) was obtained as yellow powder. m. p.: 279-281 °C. ¹H NMR (300 MHz, CDCl₃): δ 7.67–7.65 (m, 2H), 7.54–7.41 (m, 4H), 7.37–7.34 (m, 2H), 6.86 (s, 2H), 4.18–4.13 (m, 2H), 3.69–3.63 (m, 2H), 3.35 (s, 6H), 2.99–2.80 (m, 4H), 2.64–2.47 (m, 2H), 1.79–1.67 (m, 2H), 0.98 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃): δ 169.1, 154.3, 138.7, 138.3, 137.7, 132.8, 132.0, 128.8, 128.3, 126.2, 125.1, 124.8, 123.7, 114.1, 55.3, 39.5, 27.8, 24.5, 22.1, 11.5. MALDI-TOF MS: *m/z* 617.2 [M]⁺. HRMS (ESI): *m/z* calcd for C₃₇H₃₂S₂NO₄ [M + H]⁺ 618.1767, found 618.1761.

Compound 4d. According to the general method, **4d** (494 mg, 75%) was obtained as yellow powder. m. p.: 256-257 °C. ¹H NMR (300 MHz, CDCl₃): δ 7.49–7.46 (m, 4H), 7.26 (s, 2H), 6.96–6.93 (m, 4H), 6.85 (s, 2H), 4.18–4.13 (m, 2H), 3.85 (s, 6H), 3.68–3.64 (m, 2H), 3.32 (s, 6H), 3.00–2.78 (m, 4H), 2.65–2.48 (m, 2H), 1.81–1.67 (m, 2H), 0.98 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃): δ 169.2, 159.1, 154.2, 138.7, 138.5, 132.7, 132.1, 130.5, 130.3, 129.8, 126.1, 114.0, 113.8, 55.5, 55.3, 39.5, 29.9, 27.7, 24.5, 22.1, 11.6. MALDI-TOF MS: *m/z* 665.4 [M]⁺. HRMS (ESI): *m/z* calcd for C₄₃H₄₀NO₆ [M + H]⁺ 666.2850, found 666.2836.

Compound 4e. According to the general method, **4e** (467 mg, 70%) was obtained as yellow powder. m. p.: 288-289 °C. ¹H NMR (300 MHz, CDCl₃): δ 7.53–7.42 (m, 4H), 7.42–7.32 (m, 4H), 6.84 (s, 2H), 4.22– 4.11 (m, 2H), 3.69–3.64 (m, 2H), 3.31 (s, 6H), 2.97–2.81 (m, 4H), 2.62–2.50 (m, 2H), 1.80–1.67 (m, 2H), 0.98 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃): δ 169.1, 154.1, 138.7, 138.3, 136.3, 133.5, 133.4, 132.2, 130.7, 129.9, 129.6, 128.4, 126.4, 114.1, 55.3, 39.6, 27.7, 24.4, 22.1, 11.6. MALDI-TOF MS: *m/z* 673.3 [M]⁺. HRMS (ESI): *m/z* calcd for C₄₁H₃₄Cl₂NO₄ [M + H]⁺ 674.1859, found 674.1845.

Compound 3. A mixtrue of **1** (11.4 g, 20 mmol) and *n*-dodecyl amine (9.25 g, 50 mmol) in DMF (100 mL) was heated at 100 °C for 24 hours. The reaction mixture was cooled to room temperature, and then added ethyl acetate (200 mL). The organic phase was washed with saturated brine (3×100 mL), and then dried over anhydrous MgSO₄. The solvent was removed in *vacuo*, and the residue was purified by column chromatography (ethyl acetate : petroleum ether 1:5, v/v, $R_f = 0.67$) to give **3** (11.37 g, 77%) as yellow solid. m. p.: 75-76 °C. ¹H NMR (300 MHz, CDCl₃): δ 7.52 (s, 2H), 6.66 (s, 2H), 4.14–4.09 (m, 2H), 3.69–3.64 (m, 2H), 3.38 (s, 6H), 2.90–2.73 (m, 4H), 2.55–2.43 (m, 2H), 1.74–1.60 (m, 2H), 1.38–1.21 (m, 18H), 0.87 (t, *J* = 6.6 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃): δ 168.8, 153.8, 138.4, 137.9, 133.2, 133.1, 132.6, 126.6, 114.5, 112.0, 56.0, 38.0, 32.0, 29.74, 29.71, 29.6, 29.5, 29.4, 28.7, 27.4, 27.0, 24.2, 22.8, 14.3. MALDI-TOF MS: *m/z* 738.2 [M]⁺. HRMS (ESI): *m/z* calcd for C₃₈H₄₄Br₂NO₄ [M + H]⁺ 736.1632, found 736.1623.

General procedure for the synthesis of 5 by Suzuki-Miyaura cross coupling:

To a mixture of compound **3** (700 mg, 0.95 mmol), K_2CO_3 (1.31 g, 9.9 mmol), and arylboronic acid (2.85 mmol) in DMF (30 mL) and toluene (20 mL) under argon atmosphere was added catalytic amount of $Pd(PPh_3)_4$ (5% mol). The resulting mixture was stirred for 12 hours at 90°C under argon atmosphere, cooled to room temperature, and then poured into ethyl acetate (100 mL). The organic layer was washed with saturated brine (3×100 mL), dried over anhydrous MgSO₄, and then concentrated in *vacuo*. The residue was purified by column chromatography with ethyl acetate and petroleum ether (1:5, v/v) as eluent to give the pure product.

Compound 5a. According to the general method, **5a** (425 mg, 61%) was obtained as yellow powder. R_f = 0.11. m. p.: 196-198 °C. ¹H NMR (300 MHz, CDCl₃): δ 8.64–8.62 (m, 4H), 7.47–7.45 (m, 4H), 7.34 (s, 2H), 6.86 (s, 2H), 4.22–4.16 (m, 2H), 3.75–3.64 (m, 2H), 3.34 (s, 6H), 3.02–2.83 (m, 4H), 2.63–2.51 (m, 2H), 1.73–1.66 (m, 2H), 1.34–1.25 (m, 18H), 0.87 (t, *J* = 6.6 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃): δ 169.0, 154.4, 149.8, 145.6, 138.8, 138.3, 134.6, 132.4, 129.9, 127.9, 126.7, 124.1, 114.3, 55.3, 38.1, 32.1, 29.8, 29.74, 29.65, 29.5, 29.4, 28.8, 27.7, 27.1, 24.4, 22.8, 14.3. MALDI-TOF MS: *m/z* 734.5 [M+H]⁺. HRMS (ESI): *m/z* calcd for C₄₈H₅₂N₃O₄ [M + H]⁺ 734.3952, found 734.3942.

Compound 5b. According to the general method, **5b** (577 mg, 70%) was obtained as yellow powder. R_f = 0.61. m. p.: 160-161 °C. ¹H NMR (300 MHz, CDCl₃): δ 7.69–7.61 (m, 8H), 7.30 (s, 2H), 6.86 (s, 2H), 4.21–4.16 (m, 2H), 3.72–3.66 (m, 2H), 3.33 (s, 6H), 2.98–2.83 (m, 4H), 2.64–2.52 (m, 2H), 1.76–1.63 (m, 2H), 1.34–1.26 (m, 18H), 0.88 (t, *J* = 6.7 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃): δ 169.0, 154.2, 141.5, 138.7, 138.3, 134.0, 132.3, 130.1, 129.7, 129.4, 129.2, 126.5, 125.2, 125.1, 125.1, 114.1, 55.3, 38.1, 32.1, 29.8, 29.74, 29.66, 29.5, 29.4, 28.8, 27.7, 27.1, 24.4, 22.8, 14.3. MALDI-TOF MS: *m/z* 867.2 [M]⁺. HRMS (ESI): *m/z* calcd for C₅₂H₅₂NO₄F₆ [M + H]⁺ 868.3795, found 868.3786.

Compound 5c. According to the general method, **5c** (467 mg, 63%) was obtained as yellow powder. $R_f = 0.22. m. p.: 178-179 °C. ¹H NMR (300 MHz, CDCl₃): <math>\delta$ 7.71–7.63 (m, 8H), 7.30 (s, 2H), 6.85 (s, 2H), 4.22–4.16 (m, 2H), 3.71–3.67 (m, 2H), 3.33 (s, 6H), 3.00–2.83 (m, 4H), 2.63–2.51 (m, 2H), 1.75–1.64 (m, 2H), 1.34–1.25 (m 18H), 0.87 (t, J = 6.5 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃): δ 168.9, 154.1, 142.6, 138.7, 138.2, 134.4, 132.4, 132.0, 130.1, 130.0, 128.8, 126.7, 119.1, 114.1, 110.9, 55.3, 38.1, 32.1, 29.76, 29.76, 29.73, 29.6, 29.5, 29.4, 28. 8, 27.7, 27.1, 24.3, 22.8, 14.3. MALDI-TOF MS: *m/z* 781.0 [M]⁺. HRMS (ESI): *m/z* calcd for C₅₂H₅₂N₃O₄ [M + H]⁺ 782.3952, found 782.3944.

Compound 5d. According to the general method, **5d** (613 mg, 82%) was obtained as yellow powder. $R_f = 0.14$. m. p.: 89-91 °C. ¹H NMR (300 MHz, CDCl₃): δ 10.05 (s, 2H), 7.92 (d, J = 8.2 Hz, 4H), 7.71 (d, J = 8.1 Hz, 4H), 7.34 (s, 2H), 6.88 (s, 2H), 4.12–4.17 (m, 2H), 3.71–3.67 (m, 2H), 3.35 (s, 6H), 3.02–2.83 (m, 4H), 2.64–2.52 (m, 2H), 1.75–1.64 (m, 2H), 1.34–1.26 (m, 18H), 0.88 (t, J = 6.6 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃): δ 192.1, 169.0, 154.3, 144.3, 138.7, 138.3, 135.2, 134.2, 132.3, 130.1, 129.7, 129.5, 126.6, 114.2, 100.1, 55.3, 32.1, 29.77, 29.76, 29.73, 29.65, 29.5, 29.4, 28.8, 27.68, 27.65, 2718, 24.4, 22.8, 14.3. MALDI-TOF MS: *m/z* 787.5 [M]⁺. HRMS (ESI): *m/z* calcd for C₅₂H₅₄NO₆ [M + H]⁺ 788.3946, found 788.3933.

Compound 5e. According to the general method, **5e** (622 mg, 82%) was obtained as yellow powder. $R_f = 0.67. m. p.: 147-148 °C. ¹H NMR (300 MHz, CDCl₃): <math>\delta$ 7.47–7.45 (m, 4H), 7.38–7.36 (m, 4H), 6.84 (s, 2H), 4.19–4.14 (m, 2H), 3.70–3.66 (m, 2H), 3.31 (s, 6H), 2.92–2.82 (m, 4H), 2.62–2.50 (m, 2H), 1.71–1.64 (m, 2H), 1.34–1.25 (m, 18H), 0.87 (t, *J* = 5.9 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃): δ 169.1, 154.1, 138.7, 138.3, 136.3, 133.5, 133.4, 132.2, 130.7, 129.9, 129.6, 128.5, 126.4, 114.1, 55.3, 38.0, 32.1, 29.82, 29.78, 29.75, 29.66, 29.5, 29.4, 28.8, 27.7, 27.1, 24.4, 22.8, 14.3. MALDI-TOF MS: *m/z* 800.4 [M + H]⁺. HRMS (ESI): *m/z* calcd for C₅₀H₅₂NO₄Cl₂ [M + H]⁺ 800.3268, found 800.3260.

Compound 5f. According to the general method, **5f** (626 mg, 86%) was obtained as yellow powder. $R_f = 0.64. m. p.: 108-109 °C. ¹H NMR (300 MHz, CDCl₃): <math>\delta$ 7.51–7.47 (m, 4H), 7.26 (s, 2H), 7.12–7.06 (m, 4H), 6.85 (s, 2H), 4.19–4.14 (m, 2H), 3.70–3.66 (m, 2H), 3.32 (s, 6H), 2.98–2.81 (m, 4H), 2.60–2.50 (m, 2H), 1.75–1.63 (m, 2H), 1.34–1.26 (m, 18H), 0.87 (t, *J* = 6.5 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃): δ 169.1, 163.9, 160.7, 154.1, 138.7, 138.4, 133.9, 133.8, 133.3, 132.2, 131.1, 131.0, 130.0, 129.9, 126.4, 115.3, 115.0, 114.1, 55.3, 38.0, 32.1, 29.78, 29.77, 29.74, 29.65, 29.5, 29.4, 28.8, 27.7, 27.1, 24.5, 22.8, 14.3. MALDI-TOF MS: *m/z* 767.6 [M]⁺. HRMS (ESI): *m/z* calcd for C₅₀H₅₂NO₄F₂ [M + H]⁺ 768.3859, found 768.3850.

Compound 5g. According to the general method, **5g** (639 mg, 92%) was obtained as yellow powder. $R_f = 0.71. m. p.: 120-121 °C. ¹H NMR (300 MHz, CDCl₃): <math>\delta$ 7.56–7.49 (m, 4H), 7.44–7.38 (m, 4H), 7.37–7.27 (m, 4H), 6.86 (s, 2H), 4.19–4.14 (m, 2H), 3.74–3.63 (m, 2H), 3.33 (s, 6H), 2.97–2.82 (m, 4H), 2.64–2.51 (m, 2H), 1.75–1.64 (m, 2H), 1.34–1.26 (m, 18H), 0.88 (t, *J* = 6.7 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃): δ 169.2, 154.2, 138.7, 138.4, 138.0, 133.2, 132.0, 130.9, 130.1, 129.4, 128.3, 127.4, 126.3, 114.1, 55.3, 38.0, 32.1, 29.77, 29.75, 29.66, 29.5, 29.4, 28.8, 27.7, 27.1, 24.5, 22.8, 14.3. MALDI-TOF MS: *m/z* 731.4 [M]⁺. HRMS (ESI): *m/z* calcd for C₅₀H₅₄NO₄ [M + H]⁺ 732.4047, found 732.4038.

Compound 5h. According to the general method, **5h** (613 mg, 85%) was obtained as yellow powder. $R_f = 0.72. m. p.: 175-178 °C. ¹H NMR (300 MHz, CDCl₃): <math>\delta$ 7.43–7.41 (m, 4H), 7.27 (s, 2H), 7.24–7.21 (m, 4H), 6.84 (s, 2H), 4.18–4.13 (m, 2H), 3.74–3.62 (m, 2H), 3.31 (s, 6H), 2.96–2.80 (m, 4H), 2.63–2.50 (m, 2H), 2.39 (s, 6H), 1.74–1.64 (m, 2H), 1.34–1.25 (m, 18H), 0.87 (t, J = 6.6 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃): δ 169.2, 154.2, 138.7, 138.4, 137.2, 135.0, 132.9, 132.0, 130.9, 129.9, 129.3, 129.0, 126.2, 114.0, 55.3, 38.0, 32.1, 29.8, 29.7, 29.5, 29.4, 28.8, 27.7, 27.1, 24.5, 22.8, 21.4, 14.3. MALDI-TOF MS: *m/z* 759.5 [M]⁺. HRMS (ESI): *m/z* calcd for C₅₂H₅₈NO₄ [M + H]⁺ 760.4360, found 760.4353.

Compound 5i. According to the general method, **5i** (671 mg, 80%) was obtained as yellow powder. $R_f = 0.55$. m. p.: 147-149 °C. ¹H NMR (300 MHz, CDCl₃): δ 7.68–7.60 (m, 12H), 7.48–7.43 (m, 4H), 7.39–7.33 (m, 4H), 6.90 (s, 2H), 4.21–4.16 (m, 2H), 3.76–3.63 (m, 2H), 3.38 (s, 6H), 2.95–2.86 (m, 4H), 2.66–2.54 (m, 2H), 1.74–1.66 (m, 2H), 1.35–1.26 (m, 18H), 0.88 (t, J = 6.6 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃): δ 169.1, 154.3, 141.0, 140.2, 138.7, 138.4, 136.9, 133.3, 132.1, 130.4, 129.98, 129.79, 128.9, 127.4, 127.2, 127.0, 126.3, 114.0, 55.3, 38.0, 32.1, 29.77, 29.75, 29.65, 29.5, 29.4, 28.8, 27.7, 27.1, 24.5, 22.8, 14.3. MALDI-TOF MS: m/z 883.7 [M]⁺. HRMS (ESI): m/z calcd for C₆₂H₆₂NO₄ [M + H]⁺ 884.4673, found 884.4659.

Compound 5j. According to the general method, **5j** (600 mg, 85%) was obtained as yellow powder. $R_f = 0.60. m. p.: 148-149 °C. ¹H NMR (300 MHz, CDCl₃): <math>\delta$ 7.67–7.66 (m, 2H), 7.47–7.46 (m, 4H), 7.36–7.33 (m, 2H), 6.86 (s, 2H), 4.19–4.13 (m, 2H), 3.70–3.66 (m, 2H), 3.35 (s, 6H), 2.92–2.83 (m, 4H), 2.61–2.49 (m, 2H), 1.75–1.63 (m, 2H), 1.34–1.26 (m, 18H), 0.88 (t, *J* = 6.5 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃): δ 169.1, 154.3, 138.7, 138.4, 137.8, 132.9, 132.0, 128.8, 128.3, 126.2, 125.2, 124.9, 123.7, 114.1, 55.3, 38.0, 32.1, 29.78, 29.77, 29.74, 29.65, 29.5, 29.4, 28.8, 27.8, 27.1, 24.5, 22.8, 14.3. MALDI-TOF MS: *m/z* 743.4 [M]⁺. HRMS (ESI): *m/z* calcd for C₄₆H₅₀NO₄S₂ [M + H]⁺ 744.3176, found 744.3170.

Compound 5k. According to the general method, **5k** (676 mg, 90%) was obtained as yellow powder. $R_f = 0.43$. m. p.: 97-99 °C. ¹H NMR (300 MHz, CDCl₃): δ 7.49–7.46 (m, 4H), 7.26 (s, 2H), 6.96–6.93 (m, 4H), 6.85 (s, 2H), 4.18–4.13 (m, 2H), 3.85 (s, 6H), 3.70–3.66 (m, 2H), 3.32 (s, 6H), 2.97–2.81 (m, 4H), 2.64–2.48 (m, 2H), 1.76–1.62 (m, 2H), 1.34–1.26 (m, 18H), 0.87 (t, J = 6.6 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃): δ 169.2, 159.1, 154.2, 138.7, 138.4, 132.8, 132.1, 130.6, 130.5, 130.3, 129.8, 126.2, 114.0, 113.8, 55.5, 55.3, 38.0, 32.1, 29.78, 29.77, 29.75, 29.66, 29.5, 29.4, 28.8, 27.7, 27.1, 24.5, 22.8, 14.3. MALDI-TOF MS: m/z 791.5 [M]⁺. HRMS (ESI): m/z calcd for C₅₂H₅₈NO₆ [M + H]⁺ 792.4259, found 792.4253.

Compound 51. According to the general method, **51** (586 mg, 83%) was obtained as yellow powder. $R_f = 0.67. m. p.: 147-148 °C. ¹H NMR (300 MHz, CDCl₃): <math>\delta$ 7.61 (s, 2H), 7.56–7.55 (m, 2H), 7.35–7.33 (m, 2H), 7.11–7.08 (m, 2H), 6.86 (s, 2H), 4.19–4.13 (m, 2H), 3.70–3.65 (m, 2H), 3.40 (s, 6H), 3.00–2.81 (m, 4H), 2.61–2.49 (m, 2H), 1.74–1.63 (m, 2H), 1.33–1.26 (m, 18H), 0.87 (t, *J* = 6.6 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃): δ 169.1, 153.5, 139.0, 138.7, 138.2, 132.9, 132.1, 127.4, 127.1, 126.3, 126.0, 125.9, 123.6, 114.3, 55.4, 38.0, 32.1, 29.77, 29.76, 29.74, 29.65, 29.5, 29.4, 28.79, 27.81, 27.1, 24.5, 22.8, 14.3. MALDI-TOF MS: *m/z*743.3 [M]⁺. HRMS (ESI): *m/z* calcd for C₄₆H₅₀NO₄S₂ [M + H]⁺ 744.3176, found 744.3168.

Compound 5m. According to the general method, **5m** (791 mg, 78%) was obtained as yellow powder. $R_f = 0.56$. m. p.: 120-122°C. ¹H NMR (300 MHz, CDCl₃): δ 7.43 (d, J = 8.6 Hz, 4H), 7.31–7.22 (m, 10H), 7.17–6.99 (m, 16H), 6.86 (s, 2H), 4.15 (d, J = 15.9 Hz, 2H), 3.70–3.65 (m, 2H), 3.33 (s, 6H), 3.02–2.76 (m, 4H), 2.67–2.46 (m, 2H), 1.77–1.62 (m, 2H), 1.34–1.26 (m, 18H), 0.87 (t, J = 6.5 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃): δ 169.2, 154.3, 147.8, 147.1, 138.7, 138.5, 132.9, 132.1, 131.8, 130.4, 130.2, 129.8, 129.4, 126.2, 124.7, 123.2, 123.1, 114.1, 55.3, 38.0, 32.1, 29.8, 29.74, 29.65, 29.5, 29.4, 28.8, 27.8, 27.1, 24.5, 22.8, 14.2. MALDI-TOF MS: m/z 1066.7 [M+H]⁺. HRMS (ESI): m/z calcd for C₇₄H₇₂N₃O₄ [M + H]⁺ 1066.5517, found 1066.5509.

Compound 5n. According to the general method, **5n** (675 mg, 87%) was obtained as orange-red powder. $R_f = 0.27. \text{ m. p.: }196-197 \,^{\circ}\text{C. }^{1}\text{H NMR}$ (300 MHz, CDCl₃): δ 7.47–7.44 (m, 4H), 7.25 (s, 2H), 6.84 (s, 2H), 6.79–6.76 (m, 4H), 4.17–4.11 (m, 2H), 3.69–3.65 (m, 2H), 3.31 (s, 6H), 2.99 (s, 12H), 2.93–2.79 (m, 4H), 2.62–2.50 (m, 2H), 1.76–1.62 (m, 2H), 1.34–1.26 (m, 18H), 0.87 (t, J = 6.5 Hz, 3H). $^{13}\text{C NMR}$ (75 MHz, CDCl₃): δ 169.3, 154.3, 149.9, 138.6, 138.5, 132.1, 132.0, 131.1, 130.1, 129.4, 126.0, 125.9, 114.0, 112.3, 55.3, 40.7, 38.0, 32.1, 29.78, 29.77, 29.74, 29.65, 29.5, 29.4, 28.8, 27.8, 27.1, 24.5, 22.8, 14.3. MALDI-TOF MS: $m/z \, 817.1 \, [\text{M}]^+$. HRMS (ESI): $m/z \, \text{calcd for C}_{54}\text{H}_{64}\text{N}_3\text{O}_4 \, [\text{M} + \text{H}]^+ \, 818.4891$, found 818.4879.

Compound 50. According to the general method, **50** (828 mg, 81%) was obtained as red powder. m. p.: 117-118 °C. ¹H NMR (300 MHz, CDCl₃): δ 7.49 (s, 2H), 7.36 (d, *J* = 4.0 Hz, 2H), 7.29–7.24 (m, 8H), 7.20–7.17 (m, 8H), 7.03 (t, *J* = 7.1 Hz, 4H), 6.82 (s, 2H), 6.65 (d, *J* = 4.0 Hz, 2H), 4.13 (d, *J* = 16.1 Hz, 2H), 3.71–3.62 (m, 2H), 3.38 (s, 6H), 2.93–2.77 (m, 4H), 2.59–2.44 (m, 2H), 1.72–1.65 (m, 2H), 1.32–1.25 (m, 18H), 0.87 (t, *J* = 6.6 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃): δ 169.1, 153.4, 152.0, 149.0, 138.7, 138.2, 132.7, 132.4, 132.1, 129.3, 126.6, 126.2, 125.0, 123.7, 123.2, 123.0, 120.8, 114.1, 55.5, 38.0, 32.1, 29.8, 29.74, 29.65, 29.5, 29.4, 28.8, 27.8, 27.1, 24.5, 22.8, 14.3. MALDI-TOF MS: *m/z* 1078.5 [M + H]⁺. HRMS (ESI): *m/z* calcd for C₇₀H₆₈N₃O₄S₂ [M + H]⁺ 1078.46458, found 1078.46460.

Compound 6. A mixture of **1** (1.71 g, 3 mmol), 1-bromopropane (10 g), 1-propanol (10 g) and DBU (8 g) in acetonitrile (40 mL) was refluxed overnight, and then cooled to room temperature. To the reaction mixture was added ethyl acetate (100 mL). The organic phase was washed with saturated brine (3×100 mL), dried over anhydrous MgSO₄, and then concentrated in *vacuo*. The residue was submitted to column chromatography with ethyl acetate and petroleum ether (1:5, v/v) as eluent to give **6** (1.47 g, 73%) as white solid. m. p.: 84-85 °C. ¹H NMR (300 MHz, CDCl₃): δ 7.47 (s, 2H), 6.57 (s, 2H), 4.34–4.18 (m, 4H), 3.36 (s, 6H), 3.09–2.98 (m, 2H), 2.85–2.73 (m, 4H), 2.70–2.56 (m, 2H), 1.82–1.70 (m, 4H), 1.01 (t, *J* = 7.4 Hz, 6H). ¹³C NMR (75 MHz, CDCl₃): δ 168.1, 153.8, 137.7, 134.8, 133.7, 132.8, 132.1, 130.5, 114.8, 111.4, 67.5, 56.1, 28.0, 27.7, 22.1, 10.7. MALDI-TOF MS: *m/z* 672.3 [M]⁺. HRMS (ESI) *m/z* calcd for C₃₂H₃₃Br₂O₆ [M + H]⁺ 671.0638, found 671.0644.

Compound 7. To a mixture of compound **6** (60 mg, 0.09 mmol), K₂CO₃ (124 mg, 0.9 mmol), and phenylboronic acid (33 mg, 0.27 mmol) in DMF (15 mL) and toluene (10 mL) under argon atmosphere was added catalytic amount of Pd(PPh₃)₄ (5% mol). The resulting mixture was stirred for 12 hours at 90°C under argon atmosphere, cooled to room temperature, and then added ethyl acetate (100 mL). The organic layer was washed with saturated brine (3×100 mL), dried over anhydrous MgSO₄, and then concentrated in *vacuo*. The residue was purified by column chromatography with ethyl acetate and petroleum ether (1:5, v/v) as eluent to give **7** (53 mg, 88%) as white solid. m. p.: 147-149 °C. ¹H NMR (300 MHz, CDCl₃): δ 7.55–7.48 (m, 4H), 7.42–7.37 (m, 4H), 7.34–7.29 (m, 2H), 7.25 (s, 2H), 6.77 (s,

2H), 4.36–4.20 (m, 4H), 3.30 (s, 6H), 3.11–3.06 (m, 2H), 2.93–2.80 (m, 4H), 2.78–2.65 (m, 2H), 1.84– 1.72 (m, 4H), 1.02 (t, *J* = 7.4 Hz, 6H). ¹³C NMR (75 MHz, CDCl₃): δ 168.5, 154.2, 138.2, 137.7, 135.4, 133.8, 131.6, 130.3, 130.1, 129.6, 129.4, 128.2, 127.2, 114.3, 67.4, 55.3, 28.3, 28.0, 22.1, 10.8. MALDI-TOF MS: *m/z* 666.3 [M]⁺. HRMS (ESI) *m/z* calcd for C₄₄H₄₃O₆ [M + H]⁺ 667.3054, found 667.3060.

Compound 8. To a stirred solution of **7** (80 mg, 0.12 mmol) in THF (20 mL) and ether (20 mL) at 0 °C LiAlH₄ (23 mg, 0.60 mmol) was added in portions during a period of 30 min. The resulting reaction mixture was stirred at room temperature for 1 hours, and then refluxed gently for 2 hours. The reaction mixture was cooled to room temperature, quenched with water (5 mL) and an excess of concentrated hydrochloric acid, and then extracted with ethyl acetate (50 mL). The combined organic phase was washed with saturated NaHCO₃ (3×50 mL), dried over anhydrous MgSO₄, and then concentrated in *vacuo*. The residue was purified by column chromatography with methanol and CH₂Cl₂ (1:20, v/v, R_f = 0.32) to give **8** (53 mg, 80%) as white solid. ¹H NMR (300 MHz, CDCl₃): δ 7.53–7.51 (m, 4H), 7.42–7.37 (m, 4H), 7.33–7.28 (m, 2H), 7.25 (s, 2H), 6.77 (s, 2H), 4.97 (d, J = 4.6 Hz, 4H), 3.38–3.33 (m, 2H), 3.30 (s, 6H), 2.97–2.82 (m, 4H), 2.65–2.54 (m, 2H), 2.44 (t, J = 4.5 Hz, 2H). ¹³C NMR (75 MHz, CDCl₃): δ 154.1, 138.6, 138.4, 135.9, 134.9, 133.7, 131.2, 129.5, 129.43, 129.35, 128.2, 127.1, 114.6, 59.5, 55.3, 28.6, 26.4. MALDI-TOF MS: *m/z* 577.5 [M+Na]⁺. HRMS (ESI): *m/z* calcd for C₃₈H₃₄NaO₄: [M + Na]⁺ 577.2349, found 577.2339.

3. X-ray crystallographic data of 4c-e

Name	4c (CCDC 915889)	
Empirical formula	$C_{37}H_{31}NO_4S_2$	
Formula weight	617.75	
Temperature	173(2) K	
Wavelength	0.71073 A	
Crystal system	Triclinic	
Space group	P-1	
a, Å	9.848(2)	
b, Å	12.546(3)	
c, Å	12.957(3)	
alpha, deg	85.32(3)	
beta, deg	80.81(3)	
gamma, deg	69.90(3)	
Volume, Å ³	1483.4(5)	
Z	2	
Calculated density, Mg/m ³	1.383	
Absorption coefficient, mm ⁻¹	0.224	
F(000)	648	
Crystal size, mm	0.30 x 0.21 x 0.09	
Theta range for data collection, deg	1.73 to 27.48	
Limiting indices	-12<=h<=12, -16<=k<=16, -16<=l<=16	
Reflections collected / unique	13363 / 6727 [R(int) = 0.0349]	
Completeness to theta $= 27.48$	99.0 %	
Absorption correction	Semi-empirical from equivalents	
Max. and min. transmission	1.0000 and 0.8228	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	6727 / 30 / 419	
Goodness-of-fit on F ²	1.064	
Final R indices [I>2sigma(I)]	$R_1 = 0.0602, wR_2 = 0.1498$	
R indices (all data)	$R_1 = 0.0674, wR_2 = 0.1555$	
Largest diff. peak and hole, e.A ⁻³	0.694 and -0.701	

 Table S1. X-ray crystallographic data of 4c

Name	4d (CCDC 915891)
Empirical formula	$C_{43}H_{39}NO_6$
Formula weight	665.75
Temperature	173(2) K
Wavelength	0.71073 A
Crystal system	Monoclinic
Space group	P2(1)/c
a, Å	13.701(5)
b, Å	14.227(5)
c, Å	18.390(7)
alpha, deg	90
beta, deg	109.695(8)
gamma, deg	90
Volume, Å ³	3375(2)
Z	4
Calculated density, Mg/m ³	1.310
Absorption coefficient, mm ⁻¹	0.087
F(000)	1408
Crystal size, mm	0.27 x 0.24 x 0.05
Theta range for data collection, deg	2.16 to 25.00
Limiting indices	-16<=h<=12, -14<=k<=16, -21<=l<=21
Reflections collected / unique	12274 / 5930 [R(int) = 0.0650]
Completeness to theta $= 27.48$	99.6 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	1.0000 and 0.4763
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	5930 / 64 / 476
Goodness-of-fit on F ²	1.214
Final R indices [I>2sigma(I)]	$R_1 = 0.1245$, $wR_2 = 0.2267$
R indices (all data)	$R_1 = 0.1600, wR_2 = 0.2475$
Largest diff. peak and hole, e.A ⁻³	0.258 and -0.234

Table S2. X-ray crystallographic data of 4d

Name	4e (CCDC 915888)	
Empirical formula	$C_{41}H_{33}Cl_2NO_4$	
Formula weight	674.58	
Temperature	173(2) K	
Wavelength	0.71073 A	
Crystal system	Orthorhombic	
Space group	P2(1)2(1)2(1)	
a, Å	10.076(2)	
b, Å	10.201(2)	
c, Å	30.956(6)	
alpha, deg	90	
beta, deg	90	
gamma, deg	90	
Volume, Å ³	3181.8(11)	
Z	4	
Calculated density, Mg/m ³	1.408	
Absorption coefficient, mm ⁻¹	0.251	
F(000)	1408	
Crystal size, mm	0.24 x 0.18 x 0.17	
Theta range for data collection, deg	2.10 to 27.50	
Limiting indices	-13<=h<=9, -12<=k<=13, -25<=l<=39	
Reflections collected / unique	13001 / 7143 [R(int) = 0.0468]	
Completeness to theta $= 27.48$	98.5 %	
Absorption correction	Semi-empirical from equivalents	
Max. and min. transmission	1.0000 and 0.7444	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	7143 / 0 / 436	
Goodness-of-fit on F^2	1.086	
Final R indices [I>2sigma(I)]	$R_1 = 0.0614, wR_2 = 0.1211$	
R indices (all data)	$R_1 = 0.0690, wR_2 = 0.1269$	
Largest diff. peak and hole, e.A ⁻³	0.237 and -0.253	

 Table S3. X-ray crystallographic data of 4e

compound	torsion angle	dihedral angle	
4 c	50.27	28.14	
4d	43.64	56.51	
4 e	41.89	38.27	

Table S4. Torsion angles and dihedral angles of 4c-e

Fig. S1 Crystal structures and intermolecular distances of 4d (a and b); 4e (c and d). Hydrogen atoms were omitted for clarity.

Fig. S2 Packing mode of 4d. Hydrogen atoms were omitted for clarity.

Fig. S3 Packing mode of 4e. Hydrogen atoms were omitted for clarity.

4. Photophysical properties of 5a-o

Fig. S4 Fluorescence spectra of **5a** in various solvents ($c = 1.0 \times 10^{-5}$ M).

	λ_{abs}/nm	λ_{em}/nm	$arPhi_{ m f}{}^{b}$ /%
Cyclohexane	378	445	31.0
Toluene	383	459	38.3
Dichoromethane	383	472	37.3
THF	381	466	34.8
Film	388	498	16.7

Table S5. Photophysical data of **5a** in various solvents ($c = 1.0 \times 10^{-5}$ M) and in film

Fig. S5 Fluorescence spectra of **5b** in various solvents ($c = 1.0 \times 10^{-5}$ M).

	λ_{abs}/nm	$\lambda_{ m em}/ m nm$	$arPhi_{ m f}{}^{b}$ /%
Cyclohexane	376	446	39.3
Toluene	385	470	43.9
Dichoromethane	384	485	46.3
THF	381	469	60.8
Film	387	493	56.6

Table S6. Photophysical data of **5b** in various solvents ($c = 1.0 \times 10^{-5}$ M) and in film

Fig. S6 Fluorescence spectra of **5c** in various solvents ($c = 1.0 \times 10^{-5}$ M).

	$\lambda_{ m abs}/ m nm$	$\lambda_{ m em}/ m nm$	$arPhi_{ m f}^{\ b}$ /%
Cyclohexane	378	450	43.4
Toluene	390	460	52.3
Dichoromethane	384	483	43.8
THF	382	470	41.6
Film	391	501	45.0

Table S7. Photophysical data of **5c** in various solvents ($c = 1.0 \times 10^{-5}$ M) and in film

Fig. S7 Fluorescence spectra of **5d** in various solvents ($c = 1.0 \times 10^{-5}$ M).

	λ_{abs}/nm	$\lambda_{ m em}/ m nm$	$arPhi_{ m f}^{b}$ /%
Cyclohexane	380	451	46.1
Toluene	388	467	54.1
Dichoromethane	386	487	50.1
THF	384	477	48.0
Film	387	502	21.4

Table S8. Photophysical data of **5d** in various solvents ($c = 1.0 \times 10^{-5}$ M) and in film

Fig. S8 Fluorescence spectra of **5e** in various solvents ($c = 1.0 \times 10^{-5}$ M).

	λ_{abs}/nm	$\lambda_{ m em}/ m nm$	$arPhi_{ m f}^{\ b}$ /%
Cyclohexane	380	453	44.3
Toluene	385	471	52.1
Dichoromethane	384	496	65.1
THF	382	479	52.4
Film	389	500	41.8

Table S9. Photophysical data of **5e** in various solvents ($c = 1.0 \times 10^{-5}$ M) and in film

Fig. S9 Fluorescence spectra of **5f** in various solvents ($c = 1.0 \times 10^{-5}$ M).

	λ_{abs}/nm	$\lambda_{ m em}/ m nm$	$arPhi_{ m f}^{b}$ /%
Cyclohexane	380	456	40.1
Toluene	385	472	50.6
Dichoromethane	384	499	68.5
THF	384	481	54.0
Film	388	499	34.4

Table S10. Photophysical data of **5f** in various solvents ($c = 1.0 \times 10^{-5}$ M) and in film

Fig. S10 Fluorescence spectra of **5g** in various solvents ($c = 1.0 \times 10^{-5}$ M).

	λ_{abs}/nm	λ_{em}/nm	${arPsi_{ m f}}^b$ /%
Cyclohexane	380	456	43.5
Toluene	385	474	52.9
Dichoromethane	385	502	74.3
THF	382	483	51.0
Film	390	502	51.0

Table S11. Photophysical data of **5g** in various solvents ($c = 1.0 \times 10^{-5}$ M) and in film

Fig. S11 Fluorescence spectra of **5h** in various solvents ($c = 1.0 \times 10^{-5}$ M).

	$\lambda_{ m abs}/ m nm$	$\lambda_{ m em}/ m nm$	${\Phi_{\mathrm{f}}}^b$ /%
Cyclohexane	382	463	48.7
Toluene	390	480	60.8
Dichoromethane	387	509	80.3
THF	385	490	60.1
Film	391	503	53.7

Table S12. Photophysical data of **5h** in various solvents ($c = 1.0 \times 10^{-5}$ M) and in film

Fig. S12 Fluorescence spectra of **5i** in various solvents ($c = 1.0 \times 10^{-5}$ M).

	λ_{abs}/nm	$\lambda_{ m em}/ m nm$	$arPhi_{ m f}^{\ b}$ /%
Cyclohexane	384	470	55.9
Toluene	395	490	64.5
Dichoromethane	388	507	77.5
THF	386	491	64.3
Film	394	508	28.9

Table S13. Photophysical data of **5i** in various solvents ($c = 1.0 \times 10^{-5}$ M) and in film

Fig. S13 Fluorescence spectra of **5j** in various solvents ($c = 1.0 \times 10^{-5}$ M).

	λ_{abs}/nm	$\lambda_{ m em}/ m nm$	$arPhi_{ m f}^{b}$ /%
Cyclohexane	386	474	40.1
Toluene	400	490	50.0
Dichoromethane	391	518	75.6
THF	389	500	50.0
Film	397	517	45.5

Table S14. Photophysical data of **5j** in various solvents ($c = 1.0 \times 10^{-5}$ M) and in film

Fig. S14 Fluorescence spectra of **5k** in various solvents ($c = 1.0 \times 10^{-5}$ M).

	$\lambda_{ m abs}/ m nm$	λ_{em}/nm	${\varPhi_{\mathrm{f}}}^{b}$ /%
Cyclohexane	385	469	63.7
Toluene	391	491	76.0
Dichoromethane	390	526	85.3
THF	388	506	90.3
Film	395	518	61.8

Table S15. Photophysical data of **5k** in various solvents ($c = 1.0 \times 10^{-5}$ M) and in film

Fig. S15 Fluorescence spectra of **5**l in various solvents ($c = 1.0 \times 10^{-5}$ M).

	λ_{abs}/nm	$\lambda_{ m em}/ m nm$	$arPhi_{ m f}^{b}$ /%
Cyclohexane	396	486	52.7
Toluene	402	507	64.2
Dichoromethane	400	535	71.5
THF	399	519	52.1
Film	407	535	32.1

Table S16. Photophysical data of **51** in various solvents ($c = 1.0 \times 10^{-5}$ M) and in film

Fig. S16 Fluorescence spectra of **5m** in various solvents ($c = 1.0 \times 10^{-5}$ M).

	λ_{abs}/nm	$\lambda_{ m em}/ m nm$	$arPhi_{ m f}{}^b\!/\!$
Cyclohexane	405	501	76.6
Toluene	411	533	68.5
Dichoromethane	407	595	7.1
THF	404	568	30.3
Film	440	556	67.3

Table S17. Photophysical data of **5m** in various solvents ($c = 1.0 \times 10^{-5}$ M) and in film

Fig. S17 Fluorescence spectra of **5n** in various solvents ($c = 1.0 \times 10^{-5}$ M).

	λ_{abs}/nm	λ_{em}/nm	${arPsi_{ m f}}^b$ /%
Cyclohexane	404	508	76.4
Toluene	414	549	72.4
Dichoromethane	411	615	2.6
THF	411	600	2.8
Film	416	586	11.6

Table S18. Photophysical data of **5n** in various solvents ($c = 1.0 \times 10^{-5}$ M) and in film

Fig. S18 Fluorescence spectra of **50** in various solvents ($c = 1.0 \times 10^{-5}$ M).

	λ_{abs}/nm	λ_{em}/nm	${arPsi_{ m f}}^b$ /%
Cyclohexane	430	554	49.1
Toluene	440	590	46.2
Dichoromethane	436	626	1.9
THF	431	625	7.9
Film	462	625	27.1

Table S19. Photophysical data of **50** in various solvents ($c = 1.0 \times 10^{-5}$ M) and in film

Fig. S19 The 1931CIE coordinate diagram marked with 5a-o and 7 in THF (a) and solid state (b).

compounds	THF (x, y)	Solid (x, y)
7	0.1469, 0.0755	0.1496, 0.0967
5a	0.1374, 0.1854	0.1747, 0.5255
5b	0.136, 0.2072	0.1473, 0.4719
5c	0.1357, 0.2114	0.1771, 0.588
5d	0.135, 0.2687	0.1909, 0.5969
5e	0.1396, 0.2716	0.1706, 0.558
5f	0.1403, 0.2962	0.1669, 0.5488
5g	0.1396, 0.3058	0.1812, 0.5867
5h	0.1491, 0.3878	0.1851, 0.591
5i	0.1538, 0.4132	0.1986, 0.6111
5ј	0.1764, 0.4938	0.2425, 0.6466
5k	0.1963, 0.5351	0.2334, 0.6243
51	0.2411, 0.612	0.3111, 0.6452
5m	0.4623, 0.5258	0.402, 0.5785
5n	0.5428, 0.4479	0.5144, 0.4797
50	0.5913, 0.4008	0.6332, 0.3661

5. DFT calculations of 5a-o and 7

Calculations were performed with the DFT method at the B3LYP/6-31G(d) level with Gaussian 09 program.^{S1}

Fig. S20 The HOMO and LUMO of 7.

Fig. S21 The HOMO and LUMO of 5a.

Fig. S22 The HOMO and LUMO of 5b.

Fig. S23 The HOMO and LUMO of 5c.

Fig. S24 The HOMO and LUMO of 5d.

Fig. S25 The HOMO and LUMO of 5e.

Fig. S26 The HOMO and LUMO of 5f.

Fig. S27 The HOMO and LUMO of 5g.

Fig. S28 The HOMO and LUMO of 5h.

Fig. S29 The HOMO and LUMO of 5i.

Fig. S30 The HOMO and LUMO of 5j.

Fig. S31 The HOMO and LUMO of 5k.

Fig. S32 The HOMO and LUMO of 5l.

Fig. S33 The HOMO and LUMO of 5m.

Fig. S34 The HOMO and LUMO of 5n.

Fig. S35 The HOMO and LUMO of 50.

Compound	Ar	HOMO (eV)	LUMO (eV)	E _g (eV)
7	C_6H_5	-5.15	-2.11	3.03
5a	4-pyridine	-5.72	-2.84	2.88
5b	$4-CF_3C_6H_4$	-5.66	-2.82	2.84
5c	$4\text{-}\mathrm{CNC}_6\mathrm{H}_4$	-5.83	-2.85	2.99
5d	$4-OHCC_6H_4$	-5.70	-2.89	2.81
5e	$4-ClC_6H_4$	-5.51	-2.73	2.78
5f	$4-FC_6H_4$	-5.41	-2.64	2.76
5g	C_6H_5	-5.35	-2.57	2.78
5h	$4-MeC_6H_4$	-5.25	-2.50	2.75
5 i	$4-C_6H_5-C_6H_4$	-5.26	-2.59	2.67
5j	3-thiophene	-5.27	-2.58	2.70
5k	$4-CH_3OC_6H_4$	-5.07	-2.45	2.62
51	2-thiophene	-5.10	-2.58	2.53
5m	4-Ph ₂ NC ₆ H ₄	-4.81	-2.51	2.29
5n	$4-Me_2NC_6H_4$	-4.63	-2.28	2.35
50	5-Ph ₂ N-2-thienyl	-4.53	-2.44	2.08

Table S21. Thermal data of 5a-o and 7

Cartesian Coordinates (Å) and Energies at 298.15 K/1 atm for the Optimized Structures of 7.

B3LYP/6-31G* SCF energy: -2153.365976 a.u.

Table 22. Cartesian coordinates (Å) of 7

	Х	у	Z
0	-3.26367600	2.15486300	2.09706800
0	-4.06219800	-1.22235300	-1.80826300
С	-7.19742200	-4.97335800	-0.51907000
С	-7.15574400	-3.57638800	-0.56079600
Н	-8.07925900	-3.00719700	-0.62221800
С	-5.93996400	-2.90428000	-0.51793100

Н	-5.92404200	-1.82250200	-0.53902700
С	-4.71965400	-3.61500000	-0.41655100
С	-4.78586700	-5.02879200	-0.36924200
Н	-3.86614100	-5.60348800	-0.32845600
С	-6.00312100	-5.69546400	-0.42722500
Н	-6.02266900	-6.78157000	-0.40830600
С	-3.42033500	-2.94463400	-0.31429200
С	-3.10011200	-1.71912000	-0.99263300
С	-1.85765800	-1.11673700	-0.84037100
Н	-1.62596500	-0.21551200	-1.38717800
С	-0.85929500	-1.67432700	-0.01300200
С	0.46948300	-1.08669600	0.12750400
С	0.71647700	0.31875100	-0.17941000
С	-0.26827500	1.35648100	0.03880300
С	-1.31598500	1.23607800	0.99142800
Н	-1.32979700	0.36463100	1.63180700
С	-2.26951800	2.23268700	1.15753200
С	-2.23254100	3.42378200	0.37625300
С	-1.15845900	3.54039900	-0.53963100
Н	-1.11259200	4.43011700	-1.16230500
С	-0.19675800	2.56345000	-0.71637100
С	0.91451600	2.67122400	-1.72506400
Н	0.65984300	2.09698900	-2.63036400
С	2.01935000	0.69210800	-0.60901400
С	2.86976800	-1.52504700	0.08069500
С	1.55730200	-1.96686800	0.34311300
С	1.27153200	-3.38361800	0.80658700
Н	2.06992700	-3.73161400	1.46223400
Н	1.29469700	-4.06431600	-0.05565900
С	-0.08290500	-3.48530000	1.51881900
Н	-0.30450000	-4.52231000	1.79312800
Н	-0.02869500	-2.90677200	2.45512500

С	-1.15928500	-2.91687600	0.64897400
С	-2.39347300	-3.50841300	0.48113700
Н	-2.60762600	-4.42188300	1.02762400
С	-3.81861900	-0.00702100	-2.51637700
Н	-2.98482200	-0.12234100	-3.21831300
Н	-3.60874100	0.81928200	-1.82794300
Н	-4.73650000	0.19492800	-3.06986200
С	-3.29287900	1.03786700	2.96923700
Н	-3.43333300	0.09698500	2.42040800
Н	-2.37535000	0.96987800	3.56806800
С	-3.20830900	4.52235700	0.50779400
Н	1.05624400	3.71149700	-2.03939600
С	2.21306100	2.10660100	-1.13501000
С	3.06799100	-0.21638000	-0.49258600
С	4.02357500	-2.38592300	0.40136000
Н	-4.14531500	1.20108400	3.63172000
С	-4.58227600	4.29847000	0.74428600
С	-2.78728900	5.86133300	0.35147300
Н	3.00248400	2.12992600	-1.89003900
Н	2.55333200	2.75459700	-0.31520400
С	4.40316300	0.09550300	-1.09789800
0	4.03614600	-3.60993000	0.41143400
Н	-4.94030900	3.28359700	0.86607600
С	-5.48259700	5.35800700	0.81070900
С	-3.68931900	6.91916500	0.42200400
Н	-1.73218300	6.07222600	0.20411200
0	4.93773100	-0.58256800	-1.95298800
Н	-6.53613100	5.15287000	0.98499100
С	-5.04558600	6.67555100	0.65007900
Н	-3.32969400	7.93885100	0.30845300
Н	-5.75104500	7.50024800	0.70627500
Н	-8.14992200	-5.49426100	-0.55930000

0	4.94252600	1.24251000	-0.62121800
0	5.12418400	-1.65540500	0.74693000
С	6.33490000	-2.40544000	0.94528000
Н	6.14156500	-3.22238300	1.64849700
Н	6.63543000	-2.85469400	-0.00896200
С	7.39633000	-1.45252700	1.47544900
Н	7.53918200	-0.63752300	0.75496100
Н	7.02866400	-0.99194800	2.40099000
С	8.72812400	-2.16577900	1.73173800
Н	9.48164400	-1.46686500	2.11044800
Н	8.61585100	-2.96717300	2.47200600
Н	9.12332100	-2.61606700	0.81311000
С	6.20011800	1.63361200	-1.20972700
Н	6.06090000	1.79118800	-2.28593600
Н	6.91774600	0.81454600	-1.09121200
С	6.66799800	2.90053500	-0.50940300
Н	6.75582000	2.69902800	0.56535400
Н	5.89917300	3.67539500	-0.62105100
С	8.00539400	3.40045700	-1.06562400
Н	8.32742200	4.31128000	-0.55002400
Н	8.79581400	2.65042400	-0.94116900
Η	7.93283000	3.63133400	-2.13534600

Cartesian Coordinates (Å) and Energies at 298.15 K/1 atm for the Optimized Structures of **5a**.

B3LYP/6-31G* SCF energy: -1971.231157 a.u.

-

Table 23. Cartesian coordinates (Å) of 5a

	Х	у	Z
0	-3.24952100	-1.66765700	-1.75684500
С	-4.87618700	-3.46216000	-0.25338000

Н	-5.02690500	-2.39352200	-0.33636000
С	-5.97472500	-4.31605800	-0.20565300
Н	-6.98155800	-3.90414100	-0.25537900
С	-4.65695800	-6.16444000	-0.03139700
Н	-4.59479500	-7.24876900	0.04595500
С	-3.49217700	-5.40316000	-0.06120800
Н	-2.52725500	-5.89903000	-0.02888600
С	-3.57726700	-4.00138300	-0.17542600
С	-2.35785500	-3.17361300	-0.16302100
С	-2.20693600	-1.98716300	-0.94422800
С	-1.03471300	-1.24299900	-0.88597000
С	0.04113200	-1.61694700	-0.04818900
С	-0.07816800	-2.83594700	0.69543900
С	-1.25341200	-3.56264500	0.62478500
Н	-1.34405600	-4.46058600	1.22910800
С	1.09448400	-3.26308800	1.53530300
Н	1.00003300	-4.31571200	1.82259600
Н	1.11982700	-2.67744000	2.46795300
С	-3.14585700	-0.52429200	-2.59862100
Н	-2.32008500	-0.63043200	-3.31240700
Н	-3.00672600	0.39259300	-2.01245100
Н	-0.92015200	-0.37183800	-1.51486500
С	1.27963800	-0.85190700	0.03309700
С	2.39317500	-3.01468900	0.76003500
Н	-4.09093900	-0.47316500	-3.14101800
С	2.46584700	-1.57721800	0.29433500
С	1.35926500	0.57066400	-0.33127200
Н	3.27615600	-3.24678900	1.35941700
Н	2.43624700	-3.68497300	-0.11167300
С	3.68215900	-0.96036300	0.01824700
С	2.60298600	1.13174600	-0.70505300
С	0.24768800	1.49499500	-0.14166200

С	5.04943800	-1.47864000	0.13233600
С	3.74587400	0.35613600	-0.53581800
С	2.68061000	2.56807200	-1.17335600
С	0.22481200	2.72218500	-0.88079200
С	-0.78485100	1.26544700	0.79670600
0	5.46647700	-2.56327500	0.54624800
Ν	5.87412900	-0.44802700	-0.35712300
С	5.15335000	0.68546600	-0.78523300
Н	3.52854000	2.68258900	-1.85194200
Η	2.89090900	3.22217500	-0.31369500
С	1.36129400	2.99138300	-1.82876500
С	-0.82996600	3.60053500	-0.70614000
Η	-0.72841600	0.38343900	1.41840700
С	-1.83563600	2.16042700	0.95846700
С	7.32114800	-0.56510500	-0.44632400
0	5.66643000	1.70042800	-1.26149400
Н	1.38277700	4.04829900	-2.11497600
Η	1.22212700	2.41132800	-2.75481900
С	-1.89771800	3.35948500	0.18455300
Η	-0.85539700	4.50585500	-1.30584900
0	-2.83058100	1.98254400	1.86834300
Н	7.64582600	0.18085200	-1.17767700
Η	7.54633900	-1.56570200	-0.82947200
С	-2.98862100	4.34345500	0.30386200
С	-2.79793600	0.83873900	2.71511400
С	-2.72573900	5.72219000	0.18323500
С	-4.33629100	3.98159500	0.49467200
Η	-2.84439600	-0.09085900	2.13435500
Н	-3.68152900	0.91887600	3.34981400
Н	-1.89742600	0.83399900	3.34094600
Н	-1.70908700	6.08394700	0.06698400
С	-3.77593800	6.63281400	0.25542900

С	-5.31031500	4.97518800	0.54232700
Н	-4.62081500	2.94160200	0.59052900
Н	-3.57569900	7.69996700	0.17363200
Н	-6.35537200	4.70122800	0.67887100
С	8.03972200	-0.35670800	0.89668200
Н	9.10830000	-0.54679800	0.72591400
Н	7.69304300	-1.12485200	1.59781100
С	7.85108200	1.03937000	1.49648300
Н	8.19078300	1.81982800	0.80615200
Н	6.79751300	1.23801500	1.72115400
Н	8.41540800	1.14077700	2.43065500
Ν	-5.89188500	-5.64907500	-0.09734900
N	-5.05856600	6.28634700	0.42784400

Cartesian Coordinates (Å) and Energies at 298.15 K/1 atm for the Optimized Structures of ${\bf 5b}$.

B3LYP/6-31G* SCF energy: -2613.233159 a.u.

	Х	У	Z
0	1.54539500	2.05607800	-1.79423900
0	2.18900100	-1.64052400	1.75837100
С	5.08863700	-5.38252300	0.03401200
С	5.11937800	-3.98997100	0.16094900
Н	6.07327600	-3.47470500	0.20903900
С	3.93649000	-3.26399000	0.21092500
Н	3.97742800	-2.18620900	0.30160400
С	2.68277900	-3.90782800	0.12356300
С	2.67640900	-5.31337800	-0.00821800
Н	1.72976600	-5.84259900	-0.04790200
С	3.85897100	-6.04193400	-0.04700600

Table 24. Cartesian coordinates (\AA) of **5b**

Н	3.82900200	-7.12254000	-0.13915800
С	1.41201200	-3.16268000	0.11822800
С	1.17643200	-2.00836500	0.92614600
С	-0.04225900	-1.34302900	0.87657800
Н	-0.21943000	-0.49961300	1.52817800
С	-1.08620800	-1.76633200	0.02155700
С	-2.37293000	-1.08396500	-0.04803300
С	-2.54872300	0.31928400	0.35135000
С	-1.50056800	1.32003500	0.19094200
С	-0.45086800	1.18288200	-0.74668300
Н	-0.44505900	0.31458200	-1.38953400
С	0.53796900	2.14944700	-0.88354600
С	0.51666300	3.33357500	-0.08482900
С	-0.56967000	3.47937100	0.80653900
Н	-0.60707400	4.36857800	1.42934800
С	-1.56240000	2.52831400	0.95729700
С	-2.71617100	2.69614000	1.90841900
Н	-2.53903300	2.10337600	2.81977100
С	-3.82843800	0.78668700	0.73226100
С	-4.76264300	-1.35334100	-0.04981400
С	-3.50666400	-1.88048500	-0.33396100
С	-3.33518500	-3.29731200	-0.83576300
Н	-4.19779800	-3.57263000	-1.44643800
Н	-3.33707400	-3.99103200	0.01855100
С	-2.01880000	-3.43828900	-1.60845400
Н	-1.85297300	-4.47477900	-1.92114800
Н	-2.07874900	-2.83237400	-2.52638500
С	-0.88135400	-2.95535600	-0.74964800
С	0.33861700	-3.60406100	-0.68711900
Н	0.49202900	-4.47756800	-1.31429900
С	1.99444300	-0.53975600	2.63966100
Н	1.16804100	-0.72930900	3.33519400

Н	1.80049300	0.38753600	2.08632900
Н	2.92599700	-0.44431000	3.19938800
С	1.59001500	0.92874600	-2.66223200
Н	1.69279900	-0.00693800	-2.09868100
Н	0.69483200	0.87794700	-3.29369000
С	1.53575600	4.39318300	-0.17756800
Н	-2.80974900	3.74155900	2.22123500
С	-4.00349300	2.20128300	1.23935400
С	-4.91639200	-0.05858700	0.53636200
С	-6.09212300	-1.95795700	-0.18596900
Н	2.46968700	1.07708500	-3.29021200
С	2.90592100	4.11220500	-0.36797200
С	1.15867100	5.74634900	-0.03198100
Н	-4.85656800	2.23862300	1.92018800
Н	-4.25982300	2.86301300	0.39819900
С	-6.34389600	0.16978700	0.78511900
0	-6.43421500	-3.05656900	-0.63078900
Ν	-6.98578400	-0.99766800	0.32430600
Н	3.22910000	3.08559400	-0.48225500
С	3.84975100	5.13159700	-0.39499300
С	2.09974400	6.76706100	-0.07021700
Н	0.10902100	6.00007300	0.07583600
0	-6.92610000	1.13579900	1.28333100
С	-8.42246700	-1.21195700	0.39995000
Н	4.89927100	4.89425000	-0.53432000
С	3.45333000	6.46406500	-0.24734600
Н	1.78433400	7.80122300	0.02224500
Н	-8.79935500	-0.51120300	1.15079100
Н	-8.58321300	-2.23612100	0.75201900
С	-9.14644900	-1.01123500	-0.94131900
Н	-10.20119900	-1.27584100	-0.78409100
Н	-8.74627300	-1.73380600	-1.66217000

С	-9.04651600	0.41121100	-1.49890400
Н	-9.44092400	1.14710900	-0.78901800
Н	-9.61045700	0.50289500	-2.43434800
Н	-8.00686000	0.68475200	-1.70893500
С	6.37315400	-6.16465200	0.04756400
С	4.47977300	7.56299900	-0.21969800
F	6.77306000	-6.44536500	1.31015600
F	7.38141800	-5.47993900	-0.53795000
F	6.25262200	-7.34509500	-0.59823300
F	4.88019500	7.83701800	1.04480100
F	3.99580900	8.71511900	-0.73422300
F	5.58802800	7.23663500	-0.92031400

Cartesian Coordinates (Å) and Energies at 298.15 K/1 atm for the Optimized Structures of 5c.

B3LYP/6-31G* SCF energy: -2123.648101 a.u.

	Х	У	Z
0	-2.34780700	1.91734000	1.84553200
0	-2.73398400	-1.67762200	-1.79071400
С	-5.40210100	-5.59781300	-0.01904200
С	-5.50289500	-4.19660000	-0.17302400
Н	-6.48451600	-3.73625400	-0.22336300
С	-4.36491100	-3.41415900	-0.25432400
Н	-4.46972800	-2.34259700	-0.36443700
С	-3.06903500	-3.98578700	-0.16951400
С	-2.98626900	-5.39417300	-0.01241900
Н	-2.01269200	-5.87349900	0.01542500
С	-4.11879300	-6.18485000	0.05336700
Н	-4.02886900	-7.26177700	0.15336500

Table 25. Cartesian coordinates (Å) of 5c

С	-1.84578400	-3.17754700	-0.18340800
С	-1.69129300	-1.98673200	-0.97847600
С	-0.51991300	-1.24692200	-0.93124900
Н	-0.41869500	-0.36671000	-1.55059700
С	0.56444900	-1.62702400	-0.11114500
С	1.81981900	-0.86800000	-0.05049000
С	1.89633100	0.55526600	-0.28843100
С	0.75232500	1.46139800	-0.12608800
С	-0.29125900	1.21612100	0.79247300
Н	-0.24003100	0.32976700	1.40934900
С	-1.35461800	2.09379900	0.93671100
С	-1.43543500	3.29283600	0.14299600
С	-0.34543600	3.54739000	-0.71625200
Н	-0.36772900	4.44845700	-1.32116300
С	0.73787100	2.69086200	-0.85073600
С	1.91526300	3.01581200	-1.73152300
Н	1.84869500	2.46735000	-2.68329700
С	3.14812600	1.15705100	-0.60327600
С	4.22371700	-0.97357900	-0.05249700
С	3.01213200	-1.61794800	0.16191100
С	2.92899500	-3.07352800	0.55850300
Н	3.83454700	-3.35538800	1.09928900
Н	2.90260800	-3.70193100	-0.34457500
С	1.66393000	-3.32860400	1.38823500
Н	1.56441600	-4.39088200	1.63366200
Н	1.74246700	-2.78784100	2.34356700
С	0.46411200	-2.85433800	0.61186400
С	-0.72259100	-3.57205100	0.57389600
Н	-0.80008000	-4.47064400	1.17784200
С	-2.64079900	-0.53565600	-2.63578700
Н	-1.81427800	-0.63772300	-3.34949100
Н	-2.50861700	0.38291600	-2.05051200

Η	-3.58645000	-0.49351400	-3.17733200
С	-2.30799000	0.78438800	2.70615500
Η	-2.34916700	-0.15185400	2.13550500
Η	-1.40653800	0.79330900	3.33089000
С	-2.54873600	4.24303600	0.22798100
Η	1.92343800	4.08185800	-1.98048100
С	3.20599100	2.61232500	-1.00619700
С	4.28741300	0.37232700	-0.47985500
С	5.61054600	-1.49514800	0.04265100
Η	-3.19148300	0.86647100	3.34026200
С	-3.89124100	3.83127400	0.43267500
С	-2.31244000	5.63127200	0.04824300
Η	4.09063700	2.78365600	-1.62251400
Η	3.32879600	3.23973400	-0.11047600
С	5.71455300	0.72789800	-0.68644500
0	6.01116200	-2.60945400	0.37607800
N	6.43366200	-0.42824000	-0.34501900
Н	-4.11285600	2.78009100	0.56433400
С	-4.93026400	4.74433100	0.44198300
С	-3.34364300	6.55205300	0.07259500
Н	-1.29470800	5.98993600	-0.06971100
0	6.21072500	1.78435800	-1.07264400
С	7.88714500	-0.52655000	-0.40936900
Н	-5.95157600	4.40520500	0.58329400
С	-4.67694100	6.12352200	0.26342900
Н	-3.13479000	7.61032000	-0.04713600
Н	8.21950400	0.27842600	-1.07096100
Н	8.12853800	-1.48990000	-0.86933600
С	8.57039400	-0.42079500	0.96304600
Н	9.64456600	-0.58280200	0.80100600
Н	8.22112200	-1.24861500	1.59128900
С	8.34896200	0.91887300	1.67032400

Н	8.68800000	1.75781800	1.05215600
Н	8.89629600	0.95161900	2.61900200
Н	7.28910200	1.08338300	1.89402600
С	-6.57383300	-6.40497800	0.05941400
Ν	-7.53345000	-7.06529400	0.12445100
С	-5.74591900	7.06525900	0.27812200
Ν	-6.62168100	7.83621700	0.28955800

Cartesian Coordinates (Å) and Energies at 298.15 K/1 atm for the Optimized Structures of **5d**. B3LYP/6-31G* SCF energy: -2165.807656 a.u.

	Х	У	Z
0	2.22523400	2.06099600	-1.83502400
0	2.76180500	-1.63102600	1.77785200
С	5.52917800	-5.51332900	0.09575800
С	5.60642600	-4.12103900	0.24446000
Н	6.58173400	-3.64484500	0.32341300
С	4.45611700	-3.34528400	0.28660300
Н	4.53604700	-2.27158700	0.39553100
С	3.17842800	-3.93970000	0.16801900
С	3.11754100	-5.34804500	0.01596900
Н	2.14937800	-5.83553800	-0.04001300
С	4.26642100	-6.11955000	-0.01424500
Н	4.21556400	-7.19950100	-0.11369700
С	1.93901700	-3.14968900	0.15382000
С	1.74152700	-1.97458700	0.94518000
С	0.54793000	-1.26758000	0.88319500
Н	0.39988700	-0.40946400	1.52271600
С	-0.51153300	-1.66685600	0.03457000

Table 26. Cartesian coordinates (Å) of 5d

С	-1.77412400	-0.94448300	-0.04076200
С	-1.90541500	0.46690600	0.34339000
С	-0.82858800	1.43269200	0.17379500
С	0.21513800	1.25546400	-0.76491300
Н	0.19194500	0.38127300	-1.39949600
С	1.22987400	2.19144000	-0.91608100
С	1.24872600	3.38454000	-0.12697900
С	0.16770500	3.56857700	0.76680100
Н	0.15828700	4.46207700	1.38395300
С	-0.85170400	2.64954100	0.92881500
С	-1.99669400	2.86059900	1.88206800
Н	-1.83604200	2.27046800	2.79804200
С	-3.17132200	0.97786500	0.72305100
С	-4.17097300	-1.13763400	-0.03874900
С	-2.93497400	-1.70765100	-0.31997500
С	-2.80964400	-3.13324000	-0.81017700
Н	-3.67941000	-3.38516000	-1.42081800
Н	-2.83666300	-3.81904900	0.05000600
С	-1.49717300	-3.32533900	-1.57831100
Н	-1.36592200	-4.36982900	-1.88030900
Н	-1.53488500	-2.72691600	-2.50221600
С	-0.34638300	-2.87239000	-0.72106100
С	0.84887700	-3.56237600	-0.64746100
Н	0.97148000	-4.44744700	-1.26459100
С	2.60149300	-0.51292100	2.64413100
Н	1.76678400	-0.66551500	3.33882500
Н	2.44101200	0.41302800	2.07811300
Н	3.53377300	-0.44182700	3.20626800
С	2.22469400	0.93054300	-2.69995800
Н	2.30608800	-0.00634900	-2.13507600
Н	1.32064800	0.90571100	-3.32018900
С	2.29616600	4.41060800	-0.22939000

Н	-2.05761000	3.91093000	2.18607000
С	-3.30035900	2.40100900	1.21942800
С	-4.28322500	0.16554200	0.53396100
С	-5.52174400	-1.70128200	-0.16782800
Н	3.10065600	1.05031900	-3.33913200
С	3.65360000	4.08891200	-0.46148900
С	1.96355200	5.77701800	-0.04883600
Н	-4.15067400	2.47147500	1.90106600
Н	-3.53623700	3.06329500	0.37283000
С	-5.70543400	0.44052900	0.78142500
0	-5.89670000	-2.79163500	-0.60093500
Ν	-6.38502100	-0.70918600	0.33232600
Н	3.94032400	3.05406700	-0.59505600
С	4.62214200	5.08254700	-0.49898600
С	2.93058500	6.76621300	-0.09771500
Н	0.92463300	6.05707800	0.09332300
0	-6.25386100	1.42784300	1.27132800
С	-7.82831600	-0.87808800	0.41167100
Н	5.66388000	4.81505200	-0.66456200
С	4.27657000	6.42978000	-0.31999000
Н	2.67032000	7.81310200	0.02499800
Н	-8.18207300	-0.15662100	1.15401000
Н	-8.01997100	-1.89190400	0.77775000
С	-8.54727700	-0.67204800	-0.93116900
Н	-9.60932800	-0.90196000	-0.76917400
Н	-8.17127200	-1.41566600	-1.64357600
С	-8.40474000	0.73956000	-1.50687900
Н	-8.77562000	1.49611200	-0.80606700
Н	-8.96729000	0.83645300	-2.44253000
Н	-7.35771500	0.97887200	-1.72240400
С	6.75979700	-6.32968300	0.05962200
0	6.78280200	-7.54062700	-0.06488100

Н	7.70465200	-5.74985500	0.15643800
С	5.31484500	7.47945600	-0.36810400
0	5.10223800	8.66951000	-0.22323400
Н	6.34625600	7.10422800	-0.55162600

Cartesian Coordinates (Å) and Energies at 298.15 K/1 atm for the Optimized Structures of 5e.

B3LYP/6-31G* SCF energy: -2858.349915 a.u.

	Х	У	Z
0	-2.17974500	2.02749000	1.81091900
0	-2.65397500	-1.68422300	-1.76288000
С	-5.34332900	-5.59808500	-0.08020300
С	-5.46278500	-4.21490200	-0.22875400
Н	-6.44506100	-3.76086900	-0.30679500
С	-4.31754400	-3.42879300	-0.26957300
Н	-4.41978300	-2.35702100	-0.37975800
С	-3.02947300	-3.99686500	-0.15150500
С	-2.95001700	-5.39941600	-0.00118000
Н	-1.97744000	-5.87753800	0.05662100
С	-4.08724700	-6.19726300	0.03033600
Н	-4.00434700	-7.27431100	0.12982000
С	-1.80224500	-3.18507300	-0.13750800
С	-1.62427800	-2.01235400	-0.93301800
С	-0.43971200	-1.28777700	-0.87729300
Н	-0.30554200	-0.42952600	-1.51979000
С	0.62452900	-1.66512100	-0.02699600
С	1.87989500	-0.92208300	0.04317400
С	1.98925300	0.48875100	-0.34522200
С	0.89269600	1.43943100	-0.18379000

 Table 27. Cartesian coordinates (Å) of 5e

С	-0.14763800	1.25210200	0.75465400
Н	-0.11165400	0.38169800	1.39395100
С	-1.18016000	2.17154300	0.89613100
С	-1.21640500	3.35732400	0.10086100
С	-0.13817200	3.55315600	-0.79233900
Н	-0.14183900	4.44333600	-1.41493600
С	0.89737100	2.64988100	-0.94611700
С	2.04630300	2.87675700	-1.89163900
Н	1.90623300	2.27691800	-2.80465100
С	3.24538200	1.02026700	-0.71790500
С	4.28086800	-1.08026700	0.04050500
С	3.04949500	-1.66755200	0.31821400
С	2.94520300	-3.09538500	0.80794000
Н	3.82291100	-3.33647500	1.41157400
Н	2.97331400	-3.78150200	-0.05214900
С	1.64098200	-3.30181100	1.58656500
Н	1.52488600	-4.34669700	1.89415000
Н	1.67783700	-2.69829800	2.50720200
С	0.47879500	-2.86759200	0.73434600
С	-0.70649300	-3.57620500	0.66544700
Н	-0.81478200	-4.46046200	1.28697000
С	-2.51356900	-0.56237000	-2.62709800
Η	-1.68126800	-0.70171900	-3.32754100
Η	-2.36129800	0.36438900	-2.05997300
Η	-3.45010300	-0.50173700	-3.18361900
С	-2.16252100	0.90151900	2.68078100
Η	-2.22331500	-0.03966800	2.12027800
Η	-1.26146600	0.89573500	3.30592500
Cl	-6.78540000	-6.59337700	-0.03666500
С	-2.28042800	4.36902800	0.19977500
Н	2.08935700	3.92629000	-2.20216700
С	3.35185000	2.44603200	-1.21311500

С	4.37361100	0.22618800	-0.53097500
С	5.63637800	-1.62340800	0.17057500
Н	-3.04387500	1.00746000	3.31520500
С	-3.63339000	4.03135700	0.42579700
С	-1.97338800	5.73674800	0.02435500
Н	4.20883900	2.53282300	-1.88443800
Н	3.56323100	3.11443200	-0.36467400
С	5.78804500	0.52382900	-0.77790500
0	6.03083200	-2.71031200	0.60315300
Ν	6.48415700	-0.61683200	-0.32896700
Н	-3.90883600	2.99324700	0.55885400
С	-4.62633300	5.00292300	0.46288800
С	-2.95576600	6.71850700	0.06976100
Н	-0.94075900	6.04001900	-0.11502700
0	6.32481400	1.52145800	-1.26693900
С	7.92858000	-0.76415200	-0.40952500
Н	-5.66260700	4.72498100	0.62342000
С	-4.28332200	6.34469000	0.28578200
Н	-2.69738500	7.76502200	-0.05121600
Н	8.27183900	-0.03326500	-1.14770700
Н	8.13628700	-1.77320000	-0.78044900
С	8.64516300	-0.55503300	0.93418100
Cl	-5.53217100	7.57355900	0.33984200
Н	9.71082400	-0.76826800	0.77187000
Н	8.27915900	-1.30773200	1.64221900
С	8.48121900	0.85128400	1.51717000
Н	8.84105200	1.61679500	0.82025600
Н	9.04111800	0.95230700	2.45416800
Н	7.43027700	1.07340500	1.73166500

B3LYP/6-31G* SCF energy: -2137.624319 a.u.

	Х	У	Z
0	-2.51587600	2.00282200	1.83400700
0	-2.94997300	-1.68017400	-1.75332300
С	-5.57441400	-5.62887100	-0.08939500
С	-5.72260600	-4.25102100	-0.21996900
Н	-6.71808700	-3.82399800	-0.28413000
С	-4.58637900	-3.45184200	-0.25896700
Н	-4.69840900	-2.37978300	-0.35536300
С	-3.29104500	-4.00881900	-0.15767100
С	-3.19244000	-5.41269900	-0.02503300
Н	-2.21280800	-5.87731900	0.02011900
С	-4.32006900	-6.22430800	0.00564100
Н	-4.24216800	-7.30311400	0.09056500
С	-2.07277900	-3.18256100	-0.14284900
С	-1.91176200	-2.00307300	-0.93116900
С	-0.73491200	-1.26534800	-0.87646300
Н	-0.61407500	-0.40045500	-1.51277700
С	0.33660400	-1.63515900	-0.03306500
С	1.58472300	-0.87682500	0.03740100
С	1.67491300	0.53839300	-0.33598800
С	0.56401600	1.47342600	-0.16596400
С	-0.47174600	1.26491700	0.77223100
Н	-0.42279300	0.39016000	1.40480500
С	-1.51797600	2.16812600	0.92009500
С	-1.57226200	3.35823400	0.13324700
С	-0.49737600	3.57633400	-0.75812200
Н	-0.51381600	4.47167100	-1.37326200
С	0.55148500	2.68905200	-0.91848500

Table 28. Cartesian coordinates (\AA) of 5f

С	1.69893200	2.94132800	-1.85962500
Н	1.57012200	2.34779400	-2.77839900
С	2.92267700	1.09075500	-0.70308000
С	3.98793400	-1.00533600	0.02586800
С	2.76351300	-1.61081800	0.29903800
С	2.67798500	-3.04510400	0.77362500
Н	3.56289300	-3.28332100	1.36781100
Н	2.70610100	-3.72199500	-0.09379900
С	1.38198900	-3.27281300	1.56014300
Н	1.27941800	-4.32157100	1.85947800
Н	1.41917600	-2.67671800	2.48557900
С	0.20899700	-2.84429600	0.71967200
С	-0.96879600	-3.56605500	0.65193800
Н	-1.06363700	-4.45621200	1.26734700
С	-2.82780800	-0.54772200	-2.60598100
Н	-1.99854200	-0.66958600	-3.31333000
Н	-2.68218500	0.37462700	-2.02984300
Н	-3.76851200	-0.49157000	-3.15602600
С	-2.48102500	0.87134000	2.69565200
Н	-2.52787800	-0.06696500	2.12885500
Н	-1.57956000	0.87440800	3.32032200
С	-2.65174000	4.35358800	0.24111800
Н	1.72693300	3.99428600	-2.16039100
С	3.00897800	2.52368400	-1.18151700
С	4.06263800	0.30914800	-0.52961000
С	5.34965700	-1.53287200	0.14633500
Н	-3.36342300	0.95928900	3.33149400
С	-4.00138400	3.98979100	0.45097700
С	-2.36146900	5.72856400	0.09066300
Н	3.86686500	2.63125500	-1.84867300
Н	3.20656600	3.18587300	-0.32484500
С	5.47166700	0.62771800	-0.77719700

0	5.75984900	-2.62049100	0.56474700
N	6.18305500	-0.50952700	-0.34360500
Н	-4.25892700	2.94481100	0.56445900
С	-5.00933300	4.94540500	0.49751600
С	-3.35840700	6.69537600	0.14489400
Н	-1.33159100	6.04585600	-0.03656200
0	5.99529800	1.63834300	-1.25589800
С	7.62863900	-0.63797600	-0.43032600
Н	-6.04770200	4.66705400	0.64499300
С	-4.67393200	6.28766500	0.34496000
Н	-3.13224900	7.75185900	0.04585200
Н	7.96050600	0.10422600	-1.16245500
Н	7.84779600	-1.64082800	-0.81139200
С	8.34717700	-0.43291400	0.91294300
Н	9.41499100	-0.63130900	0.74555700
Н	7.99259100	-1.19684900	1.61477300
С	8.16753700	0.96557600	1.50998500
Н	8.51526600	1.74215300	0.81918700
Н	8.72911800	1.06478900	2.44623400
Н	7.11451200	1.17224100	1.72949400
F	-6.67250900	-6.40590500	-0.05753900
F	-5.64689800	7.21590700	0.39559400

Cartesian Coordinates (Å) and Energies at 298.15 K/1 atm for the Optimized Structures of 5g.

B3LYP/6-31G* SCF energy: -1939.157401 a.u.

Table 29. Cartesian coordinates (Å) of 5g

	Х	У	Z
0	-2.83909100	1.96613800	1.86334600
0	-3.24776000	-1.66086800	-1.75232600

С	-5.87408100	-5.64175600	-0.08977900
С	-5.99887000	-4.25323500	-0.18632000
Н	-6.98485600	-3.79754700	-0.22230800
С	-4.86839700	-3.44375500	-0.23273900
Н	-4.98095600	-2.36905700	-0.30138600
С	-3.57275700	-4.00261200	-0.17123600
С	-3.46809300	-5.40770700	-0.07134500
Н	-2.48538500	-5.86899300	-0.05696800
С	-4.60055100	-6.21454200	-0.03610000
Н	-4.48970300	-7.29371900	0.02549800
С	-2.35464100	-3.17383400	-0.16157400
С	-2.20370500	-1.98584200	-0.94003400
С	-1.02986300	-1.24300000	-0.88535700
Н	-0.91765900	-0.37002000	-1.51223000
С	0.04719900	-1.61551300	-0.05114100
С	1.28990500	-0.84836700	0.02556900
С	1.36713000	0.57368800	-0.32447800
С	0.24746200	1.49598900	-0.13905800
С	-0.78556200	1.26370100	0.79586100
Н	-0.72796000	0.38064000	1.41606900
С	-1.84242400	2.15301700	0.95367000
С	-1.90926200	3.35285600	0.18192600
С	-0.83531200	3.59690000	-0.70237900
Н	-0.86089800	4.50230700	-1.30217000
С	0.22338500	2.72278800	-0.87382500
С	1.36896400	3.00118200	-1.80950400
Н	1.24586700	2.42199100	-2.73826200
С	2.60933200	1.14268500	-0.68414000
С	3.69422100	-0.95624700	0.00736500
С	2.47521900	-1.57642000	0.27265600
С	2.40234100	-3.01879100	0.72431900
Н	3.29223200	-3.26038400	1.30959500

Н	2.42970300	-3.68146300	-0.15404600
С	1.11234200	-3.26780200	1.51427600
Н	1.01857500	-4.32164100	1.79821700
Н	1.15045600	-2.68557000	2.44853100
С	-0.06849000	-2.83513500	0.68732400
С	-1.24346600	-3.56225200	0.61933000
Н	-1.33040400	-4.46103900	1.22314000
С	-3.14287300	-0.51116300	-2.58359600
Н	-2.31897200	-0.61175200	-3.30061700
Н	-2.99989600	0.40094500	-1.99062400
Н	-4.08894000	-0.45257800	-3.12405800
С	-2.79997100	0.81884400	2.70329100
Н	-2.83847600	-0.10884800	2.11856500
Н	-1.90089300	0.81573000	3.33152500
С	-3.00348900	4.33290100	0.29809700
Н	1.38702600	4.05923300	-2.09262600
С	2.68253100	2.58431700	-1.13795200
С	3.75653900	0.36797700	-0.52649500
С	5.06043100	-1.47386600	0.11706700
Н	-3.68534600	0.88899100	3.33716500
С	-4.35033700	3.94516700	0.47054000
С	-2.72565100	5.71338900	0.19152100
Н	3.53972100	2.71138600	-1.80255900
Н	2.87320200	3.23359000	-0.26986300
С	5.16198300	0.70283600	-0.77144900
0	5.48138000	-2.56460500	0.51719000
Ν	5.88383100	-0.43525600	-0.35760200
Н	-4.59447300	2.89305100	0.54786200
С	-5.36606400	4.89444500	0.52221200
С	-3.74258900	6.66038900	0.25532500
Н	-1.69594500	6.04303800	0.09279600
0	5.67653900	1.72568300	-1.23462300

С	7.33019400	-0.54935000	-0.44833500
Н	-6.39627900	4.56979900	0.64215900
С	-5.07042100	6.25627700	0.41732600
Н	-3.49827100	7.71689600	0.18595600
Н	7.65419000	0.20507700	-1.17146600
Н	7.55778200	-1.54535000	-0.84218800
С	8.04921100	-0.35455000	0.89629600
Н	9.11855300	-0.54101800	0.72479500
Н	7.70276800	-1.13044700	1.58904200
С	7.85767100	1.03466300	1.51102100
Н	8.19607900	1.82297000	0.82895000
Н	8.42058300	1.12772700	2.44713200
Н	6.80324700	1.22841500	1.73540900
Н	-5.86581200	6.99493300	0.46440900
Н	-6.75936000	-6.27092400	-0.05986200

Cartesian Coordinates (Å) and Energies at 298.15 K/1 atm for the Optimized Structures of $\mathbf{5h}$.

B3LYP/6-31G* SCF energy: -2017.793797 a.u.

	Х	У	Z
0	-2.50573300	1.97936100	1.83591900
0	-2.92845400	-1.67304800	-1.75531600
С	-5.60039500	-5.64792600	-0.07372200
С	-5.69618600	-4.25418800	-0.20433400
Н	-6.67898900	-3.79152800	-0.26280100
С	-4.56505500	-3.44916400	-0.25453300
Н	-4.67840100	-2.37656500	-0.34825200
С	-3.26969600	-4.00468600	-0.15944300
С	-3.17989600	-5.40777000	-0.02074700

Table 30. Cartesian coordinates (\AA) of 5h

Н	-2.20263300	-5.87841300	0.02539800
С	-4.31606100	-6.20570100	0.01691200
Н	-4.20684600	-7.28371500	0.11139300
С	-2.04961600	-3.18233200	-0.15108900
С	-1.88929800	-2.00010400	-0.93625600
С	-0.71126600	-1.26375100	-0.88297600
Н	-0.59239000	-0.39568300	-1.51536800
С	0.36135300	-1.63581700	-0.04325900
С	1.60973900	-0.87543900	0.02906100
С	1.69691300	0.54230100	-0.33027200
С	0.58147200	1.47361600	-0.15751400
С	-0.45484500	1.25700700	0.77718100
Н	-0.40397700	0.37908800	1.40523000
С	-1.50692500	2.15380000	0.92482300
С	-1.56558900	3.34689600	0.14222800
С	-0.48673500	3.57488600	-0.74195600
Н	-0.50471100	4.47410300	-1.35126900
С	0.56670400	2.69297900	-0.90287200
С	1.71824100	2.95649200	-1.83621000
Н	1.59730300	2.36906200	-2.75999300
С	2.94362300	1.10148100	-0.68902000
С	4.01378500	-0.99961600	0.01690100
С	2.78954300	-1.60990100	0.28235700
С	2.70589300	-3.04867600	0.74395400
Н	3.59388600	-3.29276400	1.33110500
Н	2.72828300	-3.71774300	-0.12975600
С	1.41378400	-3.28253600	1.53521800
Η	1.31281900	-4.33352200	1.82741900
Η	1.45552600	-2.69305000	2.46470500
С	0.23660300	-2.84864800	0.70307600
С	-0.94149200	-3.57012100	0.63610100
Н	-1.03416200	-4.46357500	1.24687400

С	-2.81229800	-0.52883400	-2.59230500
Н	-1.98640000	-0.63877800	-3.30570100
Н	-2.66530300	0.38572000	-2.00411700
Н	-3.75583900	-0.46659000	-3.13694400
С	-2.47260900	0.83879400	2.68480800
Н	-2.51450600	-0.09352800	2.10773200
Н	-1.57442000	0.83641200	3.31438400
С	-2.65229100	4.33396300	0.24437800
Н	1.74342800	4.01181600	-2.12906500
С	3.02617800	2.53930600	-1.15362900
С	4.08604700	0.32093200	-0.52371200
С	5.37618800	-1.52526900	0.13354300
Н	-3.35843700	0.91775500	3.31717600
С	-4.00039200	3.96653400	0.44859700
С	-2.37534100	5.71132800	0.09625300
Н	3.88788000	2.65713000	-1.81410200
Н	3.21431500	3.19480800	-0.28963200
С	5.49419200	0.64529300	-0.76699800
0	5.78956800	-2.61642500	0.54122600
Ν	6.20774500	-0.49482200	-0.34464600
Н	-4.25514800	2.92057500	0.56360800
С	-5.00652000	4.92419100	0.48869900
С	-3.38592000	6.66242400	0.14998200
Н	-1.34706800	6.03880700	-0.02238100
0	6.01697800	1.66207100	-1.23500300
С	7.65337900	-0.61900300	-0.43135800
Н	-6.03604200	4.60573500	0.63682700
С	-4.72576900	6.29049700	0.34018200
Н	-3.13203100	7.71550000	0.05212500
Н	7.98418700	0.13033000	-1.15674900
Н	7.87563600	-1.61799400	-0.82076900
С	8.37056100	-0.42362000	0.91406700

Н	9.43915700	-0.61795400	0.74634400
Η	8.01693800	-1.19420000	1.60911600
С	8.18671400	0.96936500	1.52261800
Η	8.53275200	1.75253100	0.83842200
Η	8.74709500	1.06251500	2.46028500
Н	7.13286400	1.17118200	1.74244000
С	-6.83196300	-6.51825000	-0.06088500
Н	-7.10491300	-6.83196100	-1.07797600
Н	-6.67458500	-7.42894300	0.52662000
Н	-7.69451300	-5.98742600	0.35574000
С	-5.82538600	7.32254800	0.36197900
Н	-5.48387800	8.26382600	0.80604100
Н	-6.17238600	7.55284400	-0.65485500
Н	-6.69379300	6.97261000	0.92967800

Cartesian Coordinates (Å) and Energies at 298.15 K/1 atm for the Optimized Structures of 5i.

B3LYP/6-31G* SCF energy: -2401.272907 a.u.

	Х	У	Z
Ο	1.03332300	2.07419600	-1.73429100
Ο	1.88684400	-1.56855900	1.81587400
С	5.08423400	-5.12516800	0.08908900
С	4.99041600	-3.73066600	0.26495600
Н	5.89788100	-3.14729900	0.39131300
С	3.76433100	-3.08473000	0.31476200
Н	3.73489300	-2.01237600	0.45839500
С	2.55216400	-3.79857100	0.17268300
С	2.65075700	-5.19749100	-0.00785100
Н	1.74486900	-5.78901800	-0.09498700

Table 31. Cartesian coordinates (Å) of 5i

С	3.87816100	-5.84134700	-0.04111000
Н	3.90723700	-6.91640300	-0.19262200
С	1.23773700	-3.14235500	0.16270200
С	0.91324400	-2.00888300	0.96844100
С	-0.34956900	-1.43130500	0.90853500
Н	-0.58990500	-0.60165400	1.55772500
С	-1.35284400	-1.92022100	0.04247500
С	-2.68789200	-1.32712900	-0.03413400
С	-2.96471500	0.05815000	0.35142800
С	-1.98102800	1.13181800	0.21138100
С	-0.91167700	1.07061000	-0.70938300
Н	-0.83348900	0.20383000	-1.34938200
С	0.00990100	2.10354400	-0.83358300
С	-0.10446900	3.28536500	-0.03978700
С	-1.21540000	3.35028700	0.83397900
Н	-1.32686800	4.23306700	1.45695500
С	-2.13868100	2.33082300	0.97239900
С	-3.32239200	2.41922300	1.89868400
Н	-3.12994800	1.83470900	2.81209300
С	-4.28004200	0.44128700	0.70070400
С	-5.05492800	-1.76376500	-0.06831900
С	-3.75860700	-2.20362900	-0.32388300
С	-3.48057400	-3.60734500	-0.81601200
Н	-4.32089200	-3.95127800	-1.42303200
Н	-3.42633400	-4.29395700	0.04251700
С	-2.15784500	-3.65055800	-1.59003200
Η	-1.91678400	-4.67192200	-1.90444500
Η	-2.26329600	-3.04832300	-2.50606900
С	-1.05978100	-3.08799500	-0.72660100
С	0.20005100	-3.65265700	-0.65224900
Η	0.41652000	-4.51137400	-1.28132000
С	1.60082800	-0.48299700	2.68948600

Н	0.78231700	-0.72960300	3.37674300
Н	1.34513500	0.42630900	2.13128300
Η	2.51602100	-0.31673400	3.26013600
С	1.16661700	0.94523100	-2.58952900
Н	1.32415300	0.02292300	-2.01649600
Н	0.28677500	0.82693400	-3.23370700
С	0.83443800	4.41191000	-0.11656400
Η	-3.49204700	3.45539300	2.21133100
С	-4.55779200	1.84404300	1.19639200
С	-5.30719300	-0.47680000	0.49672100
С	-6.33705500	-2.45690800	-0.22670700
Н	2.04345600	1.14700500	-3.20705200
С	2.21956900	4.24408700	-0.34795400
С	0.37662700	5.73498500	0.08613700
Н	-5.43013000	1.82952400	1.85338400
Н	-4.83076600	2.48745200	0.34608200
С	-6.75076400	-0.34225900	0.71479500
0	-6.59791100	-3.58063200	-0.66782900
Ν	-7.30406600	-1.55390800	0.25333200
Η	2.61701900	3.24738700	-0.48936800
С	3.08377600	5.32808800	-0.36442000
С	1.24278800	6.81667800	0.05952900
Η	-0.68517400	5.91671600	0.21901700
0	-7.40917300	0.58709700	1.19082800
С	-8.72486100	-1.85903500	0.29418000
Η	4.14664500	5.15045000	-0.50052700
С	2.62336400	6.64462800	-0.16383700
Η	0.83990400	7.81872400	0.17335900
Η	-9.16514800	-1.17800600	1.02867600
Н	-8.83103100	-2.88863900	0.65138000
С	-9.42456600	-1.71411400	-1.06689000
Η	-10.46571400	-2.04084900	-0.93637900
Н	-8.96105900	-2.41640200	-1.76972600
---	-------------	-------------	-------------
С	-9.39427200	-0.29276000	-1.63527300
Н	-9.85004500	0.42403100	-0.94273100
Н	-9.93645200	-0.24130500	-2.58674100
Н	-8.36683600	0.03943100	-1.81847100
С	6.39419800	-5.80948800	0.04513200
С	6.55228500	-7.10772500	0.56608600
С	7.52075800	-5.18195500	-0.51968200
С	7.78678700	-7.75124800	0.52495100
Н	5.70662800	-7.60222600	1.03505000
С	8.75424400	-5.82716100	-0.56341300
Н	7.41912900	-4.19237800	-0.95575500
С	8.89392800	-7.11484400	-0.04076400
Н	7.88680900	-8.74915500	0.94338400
Н	9.60702200	-5.32672500	-1.01433700
Н	9.85647700	-7.61766600	-0.07386200
С	3.54885600	7.79694900	-0.18938800
С	3.32658400	8.92348800	0.62519500
С	4.67916600	7.80080600	-1.02864800
С	4.19976900	10.00820900	0.60269300
Н	2.47862300	8.93419300	1.30382300
С	5.55066500	8.88689400	-1.05269200
Н	4.85665800	6.95769000	-1.68989600
С	5.31599200	9.99596200	-0.23677300
Н	4.01286200	10.86213300	1.24828500
Н	6.41059200	8.87136600	-1.71696900
Н	5.99636300	10.84282900	-0.25525700

B3LYP/6-31G* SCF energy: -2580.669532 a.u.

	Х	у	Z
0	5.52296400	-2.60979800	0.51985600
С	-2.13620600	-1.96496600	-1.02606100
С	-2.30884900	-3.14873000	-0.25044600
С	-1.21509100	-3.54227600	0.55578100
Н	-1.29344700	-4.47613800	1.10531400
С	-0.03501600	-2.82749000	0.64026300
С	0.10194200	-1.61109100	-0.09671400
С	-0.95722200	-1.23086400	-0.95015300
Н	-0.83245700	-0.35232400	-1.56667100
С	1.14029800	-3.28556800	1.46352500
Н	1.03329000	-4.34223200	1.73213100
Н	1.18154300	-2.71727400	2.40615000
С	2.43679900	-3.04189500	0.68312300
Н	3.32108800	-3.30016200	1.26973900
Н	2.46075300	-3.69438000	-0.20291700
С	2.52776100	-1.59542300	0.24806900
С	1.35136800	-0.85521400	-0.00469900
С	1.44396600	0.56674600	-0.34316500
С	2.69419300	1.13060700	-0.68112900
С	3.83447200	0.34613600	-0.51666400
С	3.75455900	-0.98241100	0.00245500
С	5.11611700	-1.51208400	0.12421300
С	2.78363300	2.57575900	-1.12074600
Н	2.96930600	3.21614500	-0.24497600
С	1.48108300	3.00806100	-1.80400600
Н	1.51091100	4.06808500	-2.07888800
Н	1.36403900	2.43619800	-2.73790600

Table 32. Cartesian coordinates (Å) of 5j

С	0.32268400	2.73119600	-0.88276500
С	0.32960200	1.49814600	-0.16050000
С	-0.71336300	1.26849800	0.76302000
Η	-0.67510500	0.37401500	1.36775200
0	-3.18520400	-1.59877300	-1.81679900
С	5.24476000	0.67197500	-0.74098900
Ν	5.95304100	-0.47600500	-0.32926800
Η	3.64953000	2.70194900	-1.77418200
С	-0.72501900	3.61473900	-0.70873200
С	-1.76124800	2.16743200	0.92537900
С	-3.09859000	-0.38750900	-2.55814800
0	5.77354100	1.69502700	-1.18801300
С	7.39967300	-0.59994100	-0.40164400
С	-1.80785400	3.38196000	0.17355900
Η	-0.72474400	4.52511400	-1.29953700
0	-2.77403600	1.96318400	1.81375900
Η	-4.05963800	-0.28319100	-3.06447400
Η	-2.29607100	-0.42995500	-3.30489500
Η	-2.93566400	0.47280500	-1.89750000
Η	7.73887000	0.15918100	-1.11280200
Η	7.62562700	-1.59353600	-0.80246900
С	8.10174000	-0.42351200	0.95434000
С	-2.87555900	4.37373400	0.29224500
С	-2.75484500	0.79648900	2.62926300
Н	7.74034800	-1.20349000	1.63477200
Н	9.17203900	-0.61595300	0.79575300
С	7.91159100	0.96105900	1.57991300
С	-4.15227000	4.15327700	0.79379700
С	-2.73612400	5.74642900	-0.14464200
Н	-2.79341600	-0.11656500	2.02278100
Н	-3.64821700	0.85941400	3.25269700
Η	-1.86478200	0.77376700	3.26929600

Н	6.85567900	1.15968000	1.79274400
Н	8.26370200	1.75343900	0.90959300
Н	8.46314900	1.04158000	2.52393500
S	-5.14935300	5.55397400	0.72296400
Н	-4.54863900	3.22973600	1.18229200
С	-3.85972800	6.49288100	0.02549000
Н	-1.81641900	6.16383400	-0.53547900
Н	-4.00720100	7.54047800	-0.19909100
С	-3.53446500	-3.95131700	-0.26041500
С	-3.92293100	-4.73639500	0.81626500
С	-4.47540600	-4.07718800	-1.34892700
S	-5.38295100	-5.59969900	0.52216000
Н	-3.44016800	-4.81536100	1.78023400
С	-5.50355000	-4.92733500	-1.07926400
Н	-4.36048300	-3.56101000	-2.29093700
Н	-6.32340100	-5.21080200	-1.72535200

Cartesian Coordinates (Å) and Energies at 298.15 K/1 atm for the Optimized Structures of **5k**.

B3LYP/6-31G* SCF energy: -2168.203753 a.u.

	Х	У	Z
0	-5.42050200	7.14188000	0.64510500
Ο	-2.22911400	1.86925200	1.86612100
Ο	6.29632300	1.71566700	-1.23258400
Ν	6.52237700	-0.44963000	-0.37132300
С	-4.43457500	6.22707700	0.46617400
С	-3.80901000	5.95166300	-0.75919900
Н	-4.10266300	6.46816400	-1.66579800
С	-2.80438900	4.99195500	-0.81585800

Table 33. Cartesian coordinates (Å) of 5k

Н	-2.35152200	4.77574200	-1.77842300
С	-2.38818300	4.26680200	0.32173000
С	-3.04403900	4.56142700	1.54326300
С	-1.29370200	3.29157700	0.21081800
С	-1.21158500	2.09602000	0.98506500
С	-0.15258800	1.20946700	0.81656900
С	0.86556800	1.43788500	-0.13286200
С	0.82576200	2.65539600	-0.87563400
С	-0.23662300	3.52365300	-0.69995300
Η	-0.23567300	4.45667800	-1.25657900
С	1.97920000	2.95141100	-1.79830600
Н	1.98661300	4.01074600	-2.07807700
Н	1.87384900	2.37303600	-2.72973900
С	3.29114200	2.54971900	-1.11473200
Н	4.15390200	2.69220300	-1.76896500
Н	3.46209100	3.19723600	-0.24110300
С	3.23234500	1.10414500	-0.67026400
С	1.99645800	0.52127200	-0.31583000
С	4.38869800	0.33860100	-0.52438900
С	5.78969300	0.68580000	-0.77346000
С	5.70815800	-1.49806500	0.09715800
С	4.33817200	-0.98992100	-0.00390200
С	1.93143900	-0.89834600	0.02774200
С	-5.85417600	7.90589500	-0.47342500
С	-2.24334600	0.65324800	2.60364100
С	7.96835300	-0.55313900	-0.47188500
С	-4.03742300	5.52053300	1.61565800
Н	-2.74875300	4.03830100	2.44293000
Н	-0.09293100	0.32106700	1.42866300
0	6.14032400	-2.58931400	0.48671800
С	3.12276600	-1.61962100	0.26078300
С	0.69094000	-1.67856700	-0.03899000

Н	-6.27896600	7.26427000	-1.25570500
Н	-5.03280000	8.49882600	-0.89465500
Н	-6.62778600	8.57498700	-0.09400500
Н	-1.37947500	0.57961200	3.27573500
Н	-2.25904200	-0.21760800	1.93673000
Н	-3.16056100	0.67896000	3.19463200
Н	8.28285800	0.20868700	-1.19161000
Н	8.20134200	-1.54449700	-0.87445700
Н	-4.52313000	5.75421800	2.55788900
С	3.06198100	-3.06469400	0.70699600
С	0.59066000	-2.89653400	0.69699900
С	-0.39308900	-1.31717800	-0.86695800
Н	3.96080900	-3.30495000	1.27908800
Н	3.07934000	-3.72404300	-0.17430400
С	1.78333100	-3.32142500	1.51294300
С	-0.57644800	-3.63636100	0.63237900
Н	-0.29324500	-0.44042700	-1.49087100
С	-1.56096500	-2.07105400	-0.91836800
Н	1.69988600	-4.37610600	1.79788400
Н	1.82963000	-2.73847800	2.44624300
С	-1.69738800	-3.26150100	-0.14368600
Н	-0.64840300	-4.53567200	1.23764200
0	-2.61107600	-1.75024300	-1.72979200
С	-2.90075300	-4.10553700	-0.15189000
С	-2.51113300	-0.60153500	-2.56164900
С	-2.78789400	-5.51031600	-0.00241300
С	-4.20594500	-3.57922000	-0.26233400
Н	-2.37238700	0.31250400	-1.97071100
Н	-3.45761900	-0.54722900	-3.10248500
Н	-1.68704500	-0.69866000	-3.27913300
Н	-1.80303700	-5.96307700	0.05073700
С	-3.89941600	-6.33150800	0.03289400

С	-5.33319200	-4.39242900	-0.21826500
Н	-4.33836200	-2.51045100	-0.36996600
Н	-3.80193100	-7.40822400	0.12873100
С	-5.18927300	-5.78052700	-0.07206500
Н	-6.31520600	-3.93923200	-0.29216700
0	-6.21543000	-6.66679500	-0.02490500
С	-7.54611300	-6.17795200	-0.13962400
Н	-7.79295100	-5.49373700	0.68190600
Н	-8.19067200	-7.05644900	-0.08580100
Н	-7.70287900	-5.66774600	-1.09819300
С	8.69495000	-0.36272800	0.86909200
Н	9.76484000	-0.54044800	0.69075900
Н	8.35755100	-1.14546600	1.55866700
С	8.49692400	1.02088700	1.49436500
Н	8.82664100	1.81605300	0.81593200
Н	7.44200100	1.20548000	1.72369000
Н	9.06307700	1.11193000	2.42886400

Cartesian Coordinates (Å) and Energies at 298.15 K/1 atm for the Optimized Structures of 51.

B3LYP/6-31G* SCF energy: -2580.672978 a.u.

	Х	у	Z
0	5.56134500	-2.51735400	0.52408000
С	-2.13155500	-2.02753000	-0.89890200
С	-2.27719100	-3.20085100	-0.10171500
С	-1.15331500	-3.56273800	0.68761700
Н	-1.20183700	-4.47074700	1.27917700
С	0.01060600	-2.82387400	0.73536600
С	0.11440400	-1.61688400	-0.02269300

С	-0.96665700	-1.27080800	-0.86163100
Н	-0.87076700	-0.40477500	-1.50081200
С	1.20653500	-3.24229000	1.55127100
Н	1.12287500	-4.29422100	1.84571700
Н	1.25335600	-2.65117000	2.47915300
С	2.48502800	-2.99509100	0.74294200
Н	3.38333000	-3.22833200	1.31867000
Н	2.50332000	-3.66479400	-0.13033500
С	2.54584500	-1.55619200	0.27865000
С	1.35342100	-0.83813800	0.03253100
С	1.41739400	0.57518000	-0.33403600
С	2.65531800	1.15421500	-0.69559100
С	3.80955300	0.39200800	-0.53144200
С	3.75908800	-0.92813700	0.00654400
С	5.13172300	-1.43309000	0.11833000
С	2.71274300	2.59146900	-1.16527700
Н	2.88121900	3.25395200	-0.30262600
С	1.40139300	2.97878400	-1.85816100
Η	1.40890800	4.03288800	-2.15651600
Н	1.29757000	2.38400100	-2.77895700
С	0.24692500	2.69892000	-0.93084500
С	0.28610400	1.49012300	-0.17005900
С	-0.73898300	1.27242800	0.77576000
Η	-0.67784500	0.40277400	1.41443600
0	-3.19423700	-1.71534600	-1.68818700
С	5.21385500	0.73736600	-0.77986700
Ν	5.94667800	-0.39073300	-0.36070900
Н	3.57621300	2.72411500	-1.82056700
С	-0.81653700	3.56504300	-0.78232300
С	-1.80090600	2.15776900	0.91575100
С	-3.14999100	-0.54589300	-2.49847300
0	5.71774800	1.76105800	-1.25037100

С	7.39425300	-0.49341700	-0.45316800
С	-1.89176000	3.33519600	0.11655500
Н	-0.81789900	4.47340000	-1.37538600
0	-2.80756000	1.97500800	1.81203900
Н	-4.11769000	-0.49985600	-2.99972700
Н	-2.35186700	-0.61334800	-3.24729300
Н	-3.00628900	0.35343200	-1.88774700
Н	7.71091400	0.26206700	-1.17847100
Н	7.62980600	-1.48780400	-0.84644200
С	8.11367100	-0.29018500	0.88951200
С	-2.98688800	4.28248500	0.19517500
С	-2.80885600	0.82042900	2.64419800
Η	7.77444900	-1.06715000	1.58467600
Η	9.18433100	-0.46846200	0.71732900
С	7.91195500	1.09878700	1.50168100
С	-3.17387200	5.40609100	-0.61093600
Η	-2.83677000	-0.09855400	2.04661700
Η	-3.71507100	0.89460700	3.24680600
Η	-1.93143400	0.80518100	3.30159400
Η	6.85609900	1.28524300	1.72562000
Н	8.24471200	1.88825000	0.81810200
Н	8.47403700	1.19804000	2.43765300
Н	-2.49787400	5.67631300	-1.41263300
С	-5.04148400	5.62074100	0.74324700
Н	-5.95976200	5.99125400	1.18035100
С	-3.47432800	-4.01851700	-0.07988600
С	-3.69514600	-5.15003100	0.70678400
С	-4.95847000	-5.74981900	0.52023100
Η	-2.96378600	-5.53485900	1.40648900
Н	-5.28980100	-6.63457400	1.05258400
S	-4.90634900	-3.71709800	-1.07107000
С	-5.72392700	-5.08753200	-0.41024500

Н	-6.72485600	-5.33144500	-0.74224300
S	-4.31085600	4.18311400	1.36183200
С	-4.32771900	6.15726200	-0.30204800
Н	-4.62076300	7.05684900	-0.83201300

Cartesian Coordinates (Å) and Energies at 298.15 K/1 atm for the Optimized Structures of 5m.

B3LYP/6-31G* SCF energy: -2974.057696 a.u.

	Х	У	Z
0	1.77289600	-0.61143700	-1.58170100
0	-2.01788500	-0.14726400	1.88079200
С	-6.35781500	-2.14793000	0.13833100
С	-5.74963500	-1.76175200	1.34490400
Н	-6.06605500	-2.22554100	2.27400400
С	-4.75251600	-0.79540300	1.36020000
Н	-4.30135300	-0.51848700	2.30438700
С	-4.30965100	-0.17183400	0.17481000
С	-4.92730300	-0.57689200	-1.02688500
Н	-4.60543600	-0.13292300	-1.96417600
С	-5.93087800	-1.53672300	-1.05191700
Н	-6.38826300	-1.81987500	-1.99471300
С	-3.28090700	0.89028800	0.15680200
С	-2.13949500	0.89808600	0.99919000
С	-1.19396000	1.91729900	0.90806900
Н	-0.34010400	1.91770100	1.57099200
С	-1.32036400	2.96981500	-0.02158300
С	-0.33851400	4.06327500	-0.11785100
С	1.05873300	3.92453200	0.26844900
С	1.79196000	2.64235500	0.20227900

Table 35. Cartesian coordinates (Å) of 5m

С	1.42443800	1.60844600	-0.67803200
Н	0.55668300	1.75140100	-1.30531500
С	2.14705600	0.41941800	-0.76232800
С	3.30772500	0.22010900	0.03090600
С	3.68407100	1.28558400	0.87678800
Н	4.60121400	1.18987400	1.45272100
С	2.97453900	2.47203700	0.97063700
С	3.43074000	3.63231000	1.81787000
Η	2.81979000	3.69543700	2.73206900
С	1.83305900	5.07045900	0.53771800
С	-0.03315400	6.45167600	-0.26414900
С	-0.84645600	5.33574600	-0.45890700
С	-2.26831500	5.47069600	-0.96213300
Η	-2.34997500	6.36700700	-1.58095900
Η	-2.94829500	5.62458200	-0.11009800
С	-2.68565000	4.20479500	-1.72046700
Η	-3.72844600	4.27017700	-2.05181500
Η	-2.06503500	4.11449000	-2.62599200
С	-2.48716900	3.00609100	-0.82629900
С	-3.41431800	1.97765500	-0.73011400
Η	-4.31094000	2.03292900	-1.34284800
С	-0.86499900	-0.21139900	2.70423000
Н	-0.80663000	0.64445200	3.38934400
Н	0.05559300	-0.25557200	2.10820000
Н	-0.96701800	-1.13067500	3.28521600
С	0.54987800	-0.50373900	-2.30214100
Н	-0.29803700	-0.33910200	-1.62728000
Н	0.58729500	0.30611600	-3.04118400
С	4.11627300	-1.01066100	0.00088400
Н	4.47106100	3.49467100	2.13505300
С	3.26086600	4.93197100	1.02347100
С	1.27574400	6.32722000	0.28722100

С	-0.30665100	7.87492800	-0.48406500
Н	0.42846100	-1.45810500	-2.81847400
С	4.31456900	-1.77283600	-1.17483400
С	4.76866500	-1.46386100	1.17202200
Н	3.52735700	5.81049600	1.61535400
Н	3.94680800	4.92740900	0.16213100
С	1.84347100	7.66398400	0.44298000
0	-1.30356800	8.44941500	-0.93872000
N	0.85174700	8.54216300	-0.04802700
Н	3.85065000	-1.44894600	-2.09663100
С	5.10864900	-2.90727200	-1.18097900
С	5.56584000	-2.59642700	1.17851600
Н	4.60922400	-0.93371000	2.10496300
0	2.93367400	8.03710400	0.89429400
С	0.98633200	9.98766100	-0.05305200
Н	5.26654700	-3.45146400	-2.10645600
С	5.74798800	-3.34116800	-0.00286400
Н	6.02449200	-2.93335800	2.10238100
Н	1.78201900	10.22516600	0.65985600
Н	0.04370600	10.41143100	0.30994400
С	1.30900000	10.57293500	-1.43707000
Н	1.30995100	11.66818800	-1.34184300
Н	0.48907400	10.31709100	-2.11851100
С	2.64677800	10.10152400	-2.01371400
Н	3.47867900	10.34836800	-1.34396100
Н	2.84093100	10.56786700	-2.98713800
Н	2.65483100	9.01558600	-2.15493700
N	-7.37982200	-3.13472800	0.12259300
Ν	6.55382100	-4.50199900	-0.00567200
С	7.75016700	-4.53837900	0.75608300
С	8.59394400	-3.41393900	0.80009200
С	8.10018300	-5.69766600	1.47137000

С	9.76503900	-3.45435600	1.55050800
Н	8.33231300	-2.52595900	0.23471300
С	9.27668200	-5.72638700	2.21371100
Η	7.44067400	-6.55883500	1.45181000
С	10.11350400	-4.60766900	2.25901400
Н	10.41456800	-2.58426000	1.57164200
Η	9.53422400	-6.62279200	2.77026500
Η	11.02931700	-4.63438100	2.84165400
С	6.17012500	-5.63232900	-0.77112100
С	7.13518900	-6.36931500	-1.48132600
С	4.82000500	-6.02404000	-0.82525400
С	6.75048000	-7.47813200	-2.22847600
Η	8.17395000	-6.05775700	-1.45474800
С	4.44844100	-7.13198500	-1.58031400
Η	4.07797100	-5.46547900	-0.26497800
С	5.40834600	-7.86488800	-2.28393700
Η	7.50154900	-8.03504900	-2.78105500
Η	3.40481800	-7.43121000	-1.60902500
Η	5.11326200	-8.72962800	-2.87052000
С	-8.39055600	-3.12146600	1.11978900
С	-8.94875200	-1.90532300	1.54935300
С	-8.84282500	-4.32184100	1.69428200
С	-9.93265000	-1.89546300	2.53498900
Η	-8.60933100	-0.97609300	1.10375100
С	-9.83730800	-4.30105500	2.66915400
Н	-8.40716000	-5.26344100	1.37620800
С	-10.38632000	-3.09044000	3.09862100
Н	-10.35594600	-0.94683500	2.85391200
Η	-10.17398900	-5.23765900	3.10561900
Η	-11.15752100	-3.07833000	3.86332900
С	-7.39040600	-4.12804500	-0.89002200
С	-8.59964900	-4.53490400	-1.48054400

С	-6.18895400	-4.71804200	-1.32003200
С	-8.60212100	-5.51447600	-2.47042900
Н	-9.52973300	-4.07494300	-1.16315900
С	-6.20226200	-5.68683700	-2.32035600
Н	-5.25334000	-4.41454100	-0.86197100
С	-7.40611000	-6.09479200	-2.89986900
Н	-9.54542500	-5.81441600	-2.91901300
Н	-5.26474100	-6.13496500	-2.63887200
Η	-7.41229800	-6.85407300	-3.67652400

Cartesian Coordinates (Å) and Energies at 298.15 K/1 atm for the Optimized Structures of **5n**.

B3LYP/6-31G* SCF energy: -2207.094165 a.u.

	Х	у	Z
0	-1.86659300	2.05326600	1.77019600
0	-2.43289000	-1.64081600	-1.75260300
С	-5.22860800	-5.57232100	-0.08057700
С	-4.78706700	-4.94664600	-1.27418500
Н	-5.33908200	-5.08065500	-2.19690400
С	-3.64318200	-4.16774000	-1.29594100
Н	-3.33893100	-3.71477200	-2.23040500
С	-2.85299800	-3.96257800	-0.14207800
С	-3.30025700	-4.59190200	1.04156400
Н	-2.74506000	-4.44223000	1.96246700
С	-4.44620900	-5.36719300	1.08395700
Н	-4.74292200	-5.80705100	2.02863800
С	-1.60528500	-3.18110600	-0.14410700
С	-1.39432900	-2.02807900	-0.94907500
С	-0.18964000	-1.33040800	-0.89277800

Table 36. Cartesian coordinates (Å) of 5n

Н	-0.03895400	-0.47014300	-1.52916200
С	0.85381100	-1.71681700	-0.02945900
С	2.14374500	-1.00321000	0.02379000
С	2.29329000	0.39840200	-0.34072200
С	1.20878100	1.38796000	-0.19820500
С	0.17505000	1.24535600	0.74726000
Н	0.17533700	0.36917400	1.37979300
С	-0.83161800	2.19864800	0.88627100
С	-0.83513700	3.37386500	0.08551900
С	0.23842500	3.51926500	-0.82066900
Н	0.30061000	4.43660400	-1.40039400
С	1.24792600	2.58142900	-0.96799400
С	2.43209700	2.78887100	-1.87811400
Н	2.31459900	2.19116300	-2.79572600
С	3.56325000	0.90534300	-0.68291000
С	4.54298600	-1.23733600	0.01885800
С	3.28639000	-1.78990300	0.27473200
С	3.13485900	-3.22108100	0.74528600
Н	4.02017900	-3.50965200	1.31625800
Н	3.10137700	-3.89529700	-0.12446300
С	1.84687100	-3.37968000	1.56185000
Н	1.69874900	-4.42169200	1.86784900
Н	1.93632700	-2.78298100	2.48333600
С	0.67720900	-2.89656500	0.74195800
С	-0.52794100	-3.57800700	0.67791100
Н	-0.63297100	-4.49190800	1.25685100
С	-2.30798400	-0.43894500	-2.50046600
Н	-1.50747200	-0.50851900	-3.24792400
Н	-2.11790300	0.42168100	-1.84739000
Η	-3.26545700	-0.30758700	-3.00862800
С	-1.96080500	0.85075100	2.52167300
Η	-2.02124500	-0.02736400	1.86704000

Н	-1.11060900	0.73363700	3.20546300
С	-1.86771500	4.41984300	0.16729100
Η	2.50305000	3.83853200	-2.18546600
С	3.70716000	2.33637100	-1.15637900
С	4.67619000	0.07855500	-0.51437000
С	5.87876100	-1.82153300	0.14627300
Η	-2.88137000	0.93791600	3.10231900
С	-2.50590300	4.79048200	1.37299900
С	-2.24199800	5.14559600	-0.98636600
Η	4.59017300	2.41836700	-1.79390900
Η	3.89213100	2.99543400	-0.29404100
С	6.09622300	0.34176300	-0.75088900
0	6.24578800	-2.93059700	0.55711100
Ν	6.75831400	-0.82824000	-0.32469200
Η	-2.24894500	4.27083500	2.28666700
С	-3.43819400	5.81194500	1.42689200
С	-3.17807600	6.16453000	-0.95271000
Η	-1.80379600	4.88020000	-1.94350600
0	6.67008500	1.33462700	-1.21675000
С	8.19617000	-1.01550400	-0.40401900
Η	-3.87854000	6.05985100	2.38535100
С	-3.80653100	6.53445700	0.26340300
Η	-3.43142600	6.66990600	-1.87698900
Η	8.56345100	-0.28504200	-1.13149300
Η	8.37838900	-2.02513700	-0.78734600
С	8.91629000	-0.84472600	0.94307200
Η	9.97690700	-1.08636800	0.78385600
Η	8.52438900	-1.59477200	1.64021400
С	8.78926000	0.55808400	1.54350100
Н	9.17471500	1.32162900	0.85807400
Н	9.34452100	0.63239200	2.48624500
Η	7.74298700	0.80624000	1.75066800

Ν	-6.36956000	-6.34458600	-0.05287700
Ν	-4.73550500	7.55076200	0.31201800
С	-7.15868900	-6.52858200	-1.26070600
Н	-8.02749200	-7.14663000	-1.03130300
Н	-7.51756100	-5.56950300	-1.65698000
Н	-6.58170800	-7.02945400	-2.05001400
С	-6.78582600	-6.99236500	1.18094600
Η	-6.01344000	-7.67558900	1.55841200
Η	-7.00707200	-6.25917800	1.96857600
Η	-7.69025600	-7.57269000	0.99471100
С	-5.08291600	8.28470700	-0.89480700
Η	-4.20668500	8.78232000	-1.33143000
Η	-5.51712300	7.62546700	-1.65863600
Η	-5.82038100	9.04983500	-0.64985700
С	-5.36691000	7.90654100	1.57327200
Η	-6.06813200	8.72467800	1.40536600
Η	-5.92427000	7.06108100	1.99823600
Η	-4.62851900	8.23664900	2.31629400

Cartesian Coordinates (Å) and Energies at 298.15 K/1 atm for the Optimized Structures of 50.

B3LYP/6-31G* SCF energy: -3615.567277 a.u.

	Х	У	Z
0	-7.64157400	-4.01008300	-1.14864600
С	-0.16610300	-2.36295400	0.57350600
С	0.19622500	-3.28839700	-0.44037800
С	-0.84306000	-3.69691700	-1.30902400
Н	-0.62808100	-4.45705900	-2.05401800
С	-2.13413400	-3.20105000	-1.23902400

 Table 37. Cartesian coordinates (Å) of 50

С	-2.46074500	-2.22103500	-0.26378200
С	-1.45748200	-1.85390100	0.65857200
Н	-1.71304600	-1.17499200	1.46038200
С	-3.24016600	-3.68858600	-2.14225900
Н	-2.95738600	-4.63285400	-2.62126800
Н	-3.42310100	-2.96178500	-2.94933200
С	-4.52647400	-3.85356700	-1.32404500
Н	-5.37093300	-4.16138600	-1.94436400
Н	-4.38411600	-4.65384600	-0.58168000
С	-4.86743700	-2.56118700	-0.61348000
С	-3.82790100	-1.69248900	-0.19815800
С	-4.16546200	-0.40796100	0.39044100
С	-5.48999400	-0.12185000	0.76740500
С	-6.49046800	-1.04252100	0.43513300
С	-6.17846900	-2.22041600	-0.29846200
С	-7.43539400	-2.94788200	-0.55469800
С	-5.82233800	1.17634400	1.47244900
Н	-6.08571400	1.94810600	0.73274200
С	-4.62158300	1.65011900	2.30075700
Н	-4.83025400	2.60820600	2.79032600
Н	-4.42855100	0.91388100	3.09595800
С	-3.42086100	1.76556900	1.39635200
С	-3.21394400	0.72981200	0.44369700
С	-2.17769800	0.88668100	-0.48941000
Н	-2.05041900	0.13533000	-1.25530900
0	0.82818300	-2.02323500	1.45037700
С	-7.93026400	-1.00828500	0.67304000
N	-8.43617000	-2.17106800	0.04249600
Н	-6.71232700	1.03370500	2.08936500
С	-2.56584600	2.85222100	1.42268700
С	-1.31903200	1.98378800	-0.44742300
С	0.54014000	-1.13178700	2.51485800

0	-8.63402400	-0.19148400	1.27713500
С	-9.83930600	-2.54900700	0.05448700
С	-1.47792200	3.00148200	0.52852700
Н	-2.74773200	3.62233700	2.16560300
0	-0.29219700	2.15529500	-1.32502500
Н	1.47484400	-1.01834100	3.06710400
Н	-0.23039400	-1.53853000	3.18198200
Н	0.21332800	-0.15306900	2.14031200
Н	-10.30321400	-1.97858700	0.86488900
Н	-9.89568400	-3.61658500	0.29294400
С	-10.56149900	-2.28304200	-1.27534300
С	-0.60498400	4.15932800	0.62907600
С	-0.00587200	1.13748200	-2.28255900
Н	-10.07569500	-2.87764700	-2.05791400
Н	-11.58601300	-2.66894300	-1.17681700
С	-10.60052200	-0.80562800	-1.67608500
С	-0.71935600	5.21956900	1.53333500
Н	0.19247600	0.17836700	-1.79185000
Н	0.88701400	1.47581800	-2.81013900
Н	-0.83137900	1.02434700	-2.99451100
Н	-9.59073100	-0.41088800	-1.83141900
Н	-11.07317900	-0.19437500	-0.89860600
Н	-11.16068000	-0.66704300	-2.60842800
Н	-1.51563500	5.28278500	2.26378500
С	1.21708800	5.90186400	0.44282200
С	1.54288400	-3.82109800	-0.61137300
С	2.01632700	-4.53640900	-1.70211500
С	3.33874300	-5.01679600	-1.56782400
Н	1.41669600	-4.72329000	-2.58516900
Н	3.85577000	-5.59258700	-2.32742100
S	2.81671100	-3.69837900	0.60594500
С	3.91806000	-4.66865600	-0.36828600

S	0.81380700	4.39922000	-0.39113800
С	0.28822400	6.18844800	1.43728400
Н	0.35091600	7.06437700	2.07130100
N	5.23339200	-4.91195600	0.04756900
С	6.30688900	-4.65920600	-0.85139500
С	7.39819600	-5.54043000	-0.92528000
С	6.28293400	-3.53079700	-1.68723800
С	8.44474900	-5.28739500	-1.80982800
Н	7.41888400	-6.42145800	-0.29215700
С	7.32852400	-3.29511100	-2.57664300
Н	5.44167700	-2.84744600	-1.63453800
С	8.41772500	-4.16732600	-2.64325100
Н	9.27980700	-5.98159600	-1.85628000
Н	7.29457900	-2.41618200	-3.21538900
Н	9.23246200	-3.97809500	-3.33630000
С	5.47932100	-5.43189600	1.34967100
С	4.62061400	-6.39733700	1.89787200
С	6.56968300	-4.97469700	2.10761200
С	4.84793700	-6.88850300	3.18169700
Н	3.78126400	-6.75698900	1.31150500
С	6.79674500	-5.48461200	3.38388500
Н	7.23064600	-4.22039400	1.69309500
С	5.93748600	-6.44033600	3.93131400
Н	4.17382000	-7.63572000	3.59185900
Н	7.64400900	-5.12016500	3.95898700
Н	6.11450300	-6.82979500	4.92976500
N	2.28423500	6.68401500	0.04584600
С	3.45714100	6.09440000	-0.51714800
С	4.03703100	6.65619300	-1.66489700
С	4.03362700	4.96100700	0.07564900
С	5.18096000	6.08216700	-2.21257700
Н	3.58342300	7.52865800	-2.12368100

С	5.17345300	4.39078000	-0.48690700
Н	3.59544300	4.54346300	0.97609100
С	5.75161600	4.94723100	-1.62995000
Н	5.62132200	6.51720300	-3.10506300
Н	5.61705500	3.51574200	-0.02099200
Н	6.64200000	4.50117200	-2.06290900
С	2.22312000	8.10331500	0.19815000
С	1.06624200	8.80728600	-0.16982900
С	3.33115900	8.79636200	0.70843700
С	1.02187000	10.19118800	-0.01936100
Н	0.21794800	8.26925200	-0.57987700
С	3.27655700	10.18100800	0.84798000
Н	4.22093300	8.24701900	0.99803200
С	2.12386300	10.88390000	0.48847100
Н	0.12609000	10.73066500	-0.31310500
Н	4.13556000	10.71079300	1.24951200
Н	2.08531500	11.96322900	0.60120300

S1. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.;
Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian,
H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.;
Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.;
Montgomery, Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.;
Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S.
S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, N. J.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.;
Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli,
C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.;
Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.;

6. ¹H NMR and ¹³C NMR spectra of new compounds

7.67 77.66 77.66 77.47 7.45 7.45 77.45 77.45 77.37 77.37 -0.00

C7.49 -7.46 -7.26 -7.26 -0.97 -6.97 -6.94 -6.85

---0.00 $\begin{array}{c} 4.18\\ 4.13\\ 3.85\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.69\\ 3.251\\ 2.57\\ 2.57\\ 2.57\\ 1.77\\ 1.77\\ 1.77\\ 0.96\\ 0.96\end{array}$

Fig. S44 ¹H NMR spectrum (300 MHz, CDCl₃) of 4d.

Fig. S45 ¹³C NMR spectrum (75 MHz, CDCl₃) of 4d.

7.48 7.45 7.45 7.39 7.39 7.39 7.38 7.38 7.36

Fig. S47 ¹³C NMR spectrum (75 MHz, CDCl₃) of 4e.

-7.52 -7.26 -6.66

8.65 8.65 8.65 8.65 8.65 1.7.26 1.7.26 1.7.26 1.7.26 1.7.26 1.7.26 1.7.25 1.7.55

S101

 $\frac{\int 7.68}{\int 7.65}$ $\frac{1}{7.62}$ -6.86

-0.00

7.71 7.68 7.65 7.65 7.65 7.730 7.30

-0.000

 $\int_{-6.84}^{7.47} 7.45$

$\begin{array}{c} 7.51\\ 7.51\\ 7.51\\ 7.51\\ 7.51\\ 7.51\\ 7.51\\ 7.52\\ 7.53\\ 7.53\\ 7.53\\ 7.53\\ 7.53\\ 7.53\\ 7.53\\ 7.53\\ 7.53\\ 7.53\\ 7.53\\ 7.55\\$

 $\frac{1.43}{1.7.27}$

-4.18-4.13-0.00

Fig. S65 ¹³C NMR spectrum (75 MHz, CDCl₃) of 5h.
$\begin{array}{c} 7.67\\ 7.67\\ 7.66\\$

Fig. S67 ¹³C NMR spectrum (75 MHz, CDCl₃) of 5i.

S112

Fig. S74 ¹H NMR spectrum (300MHz, CDCl₃) of **5m**.

Fig. S75 13 C NMR spectrum (75 MHz, CDCl₃) of 5m.

Fig. S77 ¹³C NMR spectrum (75 MHz, CDCl₃) of **5n**.

7.497.377.377.367.367.367.297.207.247.267.2066.6666.666

Fig. S79 ¹³C NMR spectrum (75 MHz, CDCl₃) of **50**.

-7.47-7.26-7.26-7.27-7.26-7.26-7.26-7.281-4.23-4.23-4.26-4.23-4.26-4.23-4.26-4.23-4.26-4.26-4.26-4.26-4.26-4.26-4.26-4.26-4.26-2.81-2.81-2.76-2.76-2.77-2.76-2.7

S117

