Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2014

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C This journal is (c) The Royal Society of Chemistry 2012

Repeatable fluorescence switcher of Eu³⁺-doped CeO₂ nanorods by L(+)-ascorbic acid and hydrogen peroxide

Wei Gao,^a Jing Li,^a Xuemei Zhou,^a Zhiyun Zhang,^a Yuanyuan Ma,^{* a,b} and Yongquan Qu^{*a,b}

^a Center for Applied Chemical Research, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.

^b Institute of Chemistry for New Energy Materials, Department of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.

*To whom correspondence should be addressed. E-mail: yongquan@mail.xjtu.edu.cn; yyma@mail.xjtu.edu.cn. Tel: +86-29-83395357.

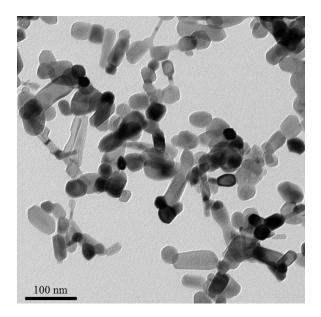


Fig. S1 TEM image of 1% Eu³⁺-doped CeO₂ calcined at 900 °C in air for 2 hours.

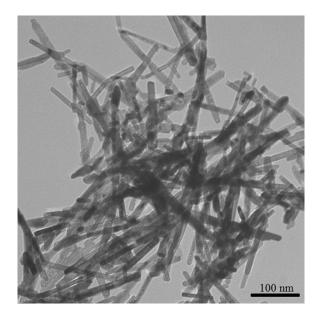


Fig. S2 TEM image of 1% Eu^{3+} -doped CeO₂ after treated by ascorbic acid and H_2O_2 (with the final concentrations of 2 mM and 1 mM, respectively) alternatively for 4 cycles.

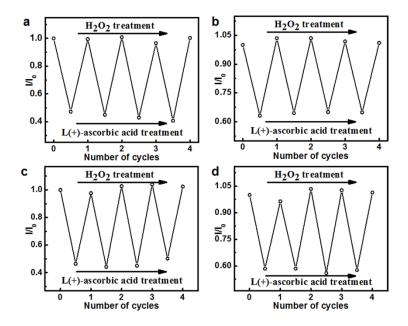


Fig. S3 The stability tests of (a) 0.5%, (b) 2.5%, (c) 5% and (d) 10% Eu³⁺-doped CeO₂ treated by ascorbic acid with the final concentration of 2 mM and H₂O₂ with the final concentration of 1 mM alternatively for 4 cycles.