Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2014

Supporting Information For:

Mechanofluorochromic Behaviors of β-Iminoenolate

Boron Complexes Functionalized with Carbazole

Zhenqi Zhang, Pengchong Xue, Peng Gong, Gonghe Zhang, Jiang Peng and Ran Lu*

State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry,

Jilin University, Changchun 130012, P. R. China

Fax: +86-431-88923907; Tel: +86-431-88499179

E-Mail: <u>luran@mail.jlu.edu.cn</u>

	solvent	E _T (30) (kcal/mol)	$\lambda_{abs}(\epsilon^a)$ (nm)	λ _{em} (nm)	Stokes shift (cm ⁻¹)	$\Phi_{\mathrm{F}}{}^{b}$
СВ	cyclohexane	30.9	292 (19784),	426,	2036	0.16
			392 (26211)	450		
	toluene	39.9	293 (27396),	442,	2886	0.34
			392 (36512)	455		
	THF	37.4	384 (35970)	458	4208	0.42
	DCM	40.7	293 (21363),	472	4720	0.58
			386 (32655)			
	DMF	43.2	292 (21232),	486	5466	0.67
			384 (32848)			
	DMSO	45.1	381 (42320)	496	6085	0.44
тсв	cyclohexane	30.9	296 (29896),	434,	1896	0.35
			401 (36897)	460		
	toluene	39.9	297 (27474),	454	3036	0.62
			399 (34461)			
	THF	37.4	294 (26671),	478	4655	0.64
			391 (36764)			
	DCM	40.7	297 (33969),	511	5619	0.65
			397 (41782)			
	DMF	43.2	296 (25282),	527	6666	0.25
			390 (33906)			
	DMSO	45.1	297 (29760),	533	6814	0.15
			391 (35813)			

Table S1. Photophysical data of **CB** and **TCB**.

^aM⁻¹cm⁻¹; ^bThe fluorescence quantum yield (Φ_F) of **CB** and **TCB** using 9,10diphenylanthracene in benzene ($\Phi_F = 0.85$) as standard.

Figure S1. Photos of **CB** in cyclohexane, toluene, THF, DCM, DMF and DMSO (from left to right), respectively, under UV light.

Figure S2. Photos of **TCB** in cyclohexane, toluene, THF, DCM, DMF and DMSO (from left to right), respectively, under UV light.

Figure S3. Cyclic voltammograms of **TB** and **TCB** measured in DCM with Bu_4NBF_4 (0.1 M) as electrolyte at a scan rate of 50 mV/s.

Figure S4. Maximum fluorescent emission of **CB** upon repeating treated by grinding and fuming with DCM.

Figure S5. Time-resolved emission decay curve of **CB** in the as-synthesized crystal monitored at 465 nm ($\lambda_{ex} = 400$ nm).

Figure S6. Time-resolved emission decay curve of **CB** in toluene monitored at 470 nm ($\lambda_{ex} = 400$ nm, 1 × 10⁻⁵mol/L).

Figure S7. Time-resolved emission decay curve of **CB** in the as-synthesized crystal monitored at 553 nm ($\lambda_{ex} = 400$ nm).

Figure S8. Maximum fluorescent emission of **TCB** upon repeating treated by grinding and fuming with DCM.

Figure S9. Time-resolved emission decay curve of **TCB** in toluene monitored at 454 nm ($\lambda_{ex} = 400$ nm, 1 × 10⁻⁵mol/L).

Figure S10. Time-resolved emission decay curve of **TCB** in the as-synthesized crystal monitored at 462 nm ($\lambda_{ex} = 400$ nm).

Figure S11. Time-resolved emission decay curve of **TCB** in the as-synthesized crystal monitored at 480 nm (λ_{ex} = 400 nm).

Figure S12. Time-resolved emission decay curve of **TCB** in the ground powder monitored at 501 nm ($\lambda_{ex} = 400$ nm).

Figure S13. ¹H NMR (400 MHz) spectrum of compound CB in DMSO-d₆.

Figure S14. ¹³C NMR (100 MHz) spectrum of compound CB in DMSO- d_6 .

Figure S15. MALDI/TOF MS spectrum of compound CB.

Figure S16. ¹H NMR (400 MHz) spectrum of compound TCB in DMSO-*d*₆.

Figure S17. ¹³C NMR (100 MHz) spectrum of compound TCB in DMSO-d₆.

Reflectron Mode

Figure S18. MALDI/TOF MS spectrum of compound TCB.