Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2014

Supporting Information

Self-assembly of LaF₃:Yb,Er/Tm Nanoplates into Colloidal Spheres and Tailoring Their Upconversion Emissions with Fluorescent

Dyes

Longyi Bao,^{*ab*} Huiling You,^{*ab*} Limin Wang^{*c*} Lei Li,^{*a*} Ru Qiao,^{*a*} Yong Zhang,^{*a*} Yijun Zhong,^{*a*} Yujie Xiong^{*c*} and Zhengquan Li*^{*ab*}

Fig. S1. FTIR spectra of (A) the LaF₃ nanoplates and (B) assembled LaF₃ nanoplates with CTAB, namely, the LaF₃ CNCs. Due to the attached OA molecules on surface, stretching peaks of $-CH_2$ and -COOH can be easily detected on the LaF₃ nanoplates. After these nanoplates were assembled into colloidal spheres with CTAB, stretching peaks from $-N(CH_3)_3$ and C-N can also be detected in addition to the peaks from OA molecules. This result clearly shows that many CTAB molecules have been adsorbed on the surface of LaF₃ CNCs after assembly.

Fig. S2. X-ray photoelectron spectroscopy (XPS) analyses of element N and Br in the LaF_3 CNCs: (A) whole spectrum; (B) N 1s; (C) Br 3d. In the synthetic system of LaF_3 CNCs, only CTAB molecules have element N and Br. The XPS data further confirm that some CTAB molecules have been adsorbed on the colloidal spheres.

Fig. S3. N_2 adsorption-desorption isotherms of the LaF₃ CNCs. This data can be clearly indexed to a typical type-IV isotherm according to the International Union of Pure and Applied Chemistry (IUPAC) nomenclature, confirming the existence of mesoporous pores inside these CNCs.

Fig. S4. UV-Vis spectra of the LaF_3 :Yb,Er CNCs loaded with different amount of Nile red. The loading concentration of dyes can be measured by UV-Vis spectroscopy and the loading amount of dyes can be reproducibly controlled.