Supporting Information of the manuscript entitled "Reversible Vapochromic Response of Polymer Films Doped with a Highly-Emissive Molecular Rotor"

Pierpaolo Minei,^a Matthias Koenig,^b Antonella Battisti,^c Muzaffer Ahmad,^a Vincenzo Barone,^a Tomas Torres,^{d,e} Dirk M. Guldi,^b Giuseppe Brancato,^a Giovanni Bottari,^{d,e,*} Andrea Pucci^{f,g,*}

^aScuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa, Italy

^bDepartment of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058, Erlangen, Germany

[°]NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, Pisa, Italy

^dDepartamento de Química Orgánica, Universidad Autónoma de Madrid, 28049, Cantoblanco, Spain, e-mail: giovanni.bottari@uam.es

^eIMDEA-Nanociencia, c/Faraday 9, Campus de Cantoblanco, 28049 Madrid, Spain

^tDipartimento di Chimica e Chimica Industriale, Università di Pisa, Pisa, Italy ^gINSTM, UdR Pisa, Italy

Fig. S1 Absorption (black spectrum) and emission (red spectrum) of a 0.05 wt.% **DPAP**/PMMA film ($\lambda_{exc} = 325$ nm).

Fig. S2 Fluorescence lifetime profiles of **DPAP**/polymer films ($\lambda_{exc} = 403 \text{ nm}$).

Fig. S3 Emission of a 0.05 wt.% **DPAP**/PMMA film as a function of the exposure to *n*-hexane vapours ($\lambda_{exc} = 325$ nm). The spectra were collected for 38 min. with a time interval of 1 min.

Fig. S4 Multiple emission spectra of a 0.05 wt.% **DPAP**/PMMA film ($\lambda_{exc} = 325$ nm). The spectra were collected for 38 min. with a time interval of 1 min.

Fig. S5 Progressive changes in the fluorescence of a 0.1 wt.% **DPAP**/PMMA film as a function of the exposure to CHCl₃ vapours ($\lambda_{exc} = 325$ nm). The spectra were collected for 16 min. with a time interval of 1 min.

Fig. S6 Multiple emission spectra of a 0.05 wt.% **DPAP**/PC film ($\lambda_{exc} = 325$ nm). The spectra were collected for 38 min. with a time interval of 1 min.

Fig. S7 Emission of a 0.05 wt.% **DPAP**/PC film as a function of the exposure to *n*-hexane vapours ($\lambda_{exc} = 325$ nm). The spectra were collected for 38 min. with a time interval of 1 min.

Fig. S8 Progressive changes in the emission of a THF–exposed 0.05 wt.% **DPAP**/PC film (after its equilibration in the presence of THF vapours) as a function of THF desorption ($\lambda_{exc} = 325$ nm). The spectra were collected for 38 min. with a time interval of 1 min.

Fig. S9 Second exposure cycle of a 0.05 wt.% **DPAP**/PC film to THF vapours ($\lambda_{exc} = 325$ nm). The spectra were collected for 38 min. with a time interval of 1 min.

Fig. S10 Fluorescence lifetime profiles of **DPAP**/PC films before and after exposure to THF vapours ($\lambda_{exc} = 403$ nm). In this latter case, after the THF vapour exposure, the investigated **DPAP**/PC film was allowed to stand at room temperature and atmospheric pressure for 40 minutes allowing the desorption of the trapped solvent molecules from the polymeric matrix.

Fig. S11 Emission of **DPAP** in mixtures of *o*-xylene/silicon oil at different volume composition ($\lambda_{exc} = 328$ nm). The OD at the excitation wavelength was 0.13 for all spectra.

Fig. S12 Fluorescence lifetime profiles of **DPAP** in mixtures of *o*-xylene/silicon oil at different volume composition ($\lambda_{exc} = 403$ nm).